897 resultados para BOLD (Blood Oxygen Level-Dependent)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphine is the most common clinical choice in the management of severe pain. Although the molecular mechanisms of morphine have already been characterized, the cerebral circuits by which it attenuates the sensation of pain have not yet been studied in humans. The objective of this two-arm (morphine versus placebo), between-subjects study was to examine whether morphine affects pain via pain-related cortical circuits, but also via reward regions that relate to the motivational state, as well as prefrontal regions that relate to vigilance as a result of morphine's sedative effects. Cortical activity was measured by the blood-oxygen-level-dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). ^ The novelty of this study is at three levels: (i) to develop a methodology that will assess the average BOLD signal across subjects for the pain, reward, and vigilance cortical systems; (ii) to examine whether the reward and/or sedative effects of morphine are contributing factors to cortical regions associated with the motivational state and vigilance; and (iii) to propose a neuroanatomical model related to the opioid-sensitive effects of reward and sedation as a function of cortical activity related to pain in an effort to assess future analgesics. ^ Consistent with our hypotheses, our findings showed that the decrease in total pain-related volume activated between the post- and the pre-treatment morphine group was about 78%, while the post-treatment placebo group displayed only a 5% decrease when compared to pre-treatment levels of activation. The volume increase in reward regions was 451% in the post-treatment compared to the pre-treatment morphine condition. Finally, the volumetric decrease in vigilance regions was 63% in the posttreatment compared to the pre-treatment morphine condition. ^ These findings imply that changes in the blood flow of the reward and vigilance regions may be contributing factors in producing the analgesic effect under morphine administration. Future studies need to replicate this study in a higher resolution fMRI environment and to assess the proposed neuroanatomical model in patient populations. The necessity of pain research is apparent, since pain cuts across different diseases especially chronic ones, and thus, is recognized as a vital public health developing area. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine if changes in intrarenal oxygenation during acute unilateral ureteral obstruction can be depicted with blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained from all patients. BOLD MR imaging was performed in 10 male patients (mean age, 45 years +/- 17 [standard deviation]; range, 20-73 years) with a distal unilateral ureteral calculus and in 10 healthy age-matched male volunteers to estimate R2*, which is inversely related to tissue Po(2). R2* values were determined in the cortex and medulla of the obstructed and the contralateral nonobstructed kidneys. To reduce external effects on R2*, the R2* ratio between the medulla and cortex was also analyzed. Statistical analysis was performed with nonparametric rank tests. P < .05 was considered to indicate a significant difference. RESULTS: All patients had significantly lower medullary and cortical R2* values in the obstructed kidney (median R2* in medulla, 10.9 sec(-1) [range, 9.1-14.3 sec(-1)]; median R2* in cortex, 10.4 sec(-1) [range, 9.7-11.3 sec(-1)]) than in the nonobstructed kidney (median R2* in medulla, 17.2 sec(-1) [range, 14.6-23.2 sec(-1)], P = .005; median R2* in cortex, 11.7 sec(-1) [range, 11.0-14.0 sec(-1)], P = .005); values in the obstructed kidneys were also significantly lower than values in the kidneys of healthy control subjects (median R2* in medulla, 16.1 sec(-1) [range, 13.9-18.1 sec(-1)], P < .001; median R2* in cortex, 11.6 sec(-1) [range, 10.5-12.9 sec(-1)], P < .001). R2* ratios in the obstructed kidneys (median, 1.06; range, 0.85-1.27) were significantly lower than those in the nonobstructed kidneys (median, 1.49; range, 1.26-1.71; P = .005) and those in the kidneys of healthy control subjects (median, 1.38; range, 1.23-1.47; P < .001). In contrast, R2* ratios in the nonobstructed kidneys of patients were significantly higher than those in kidneys of healthy control subjects (P = .01). CONCLUSION: Increased oxygen content in the renal cortex and medulla occurs with acute unilateral ureteral obstruction, suggesting reduced function of the affected kidney.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Little data is available on noninvasive MRI-based assessment of renal function during upper urinary tract (UUT) obstruction. In this study, we determined whether functional multiparametric kidney MRI is able to monitor treatment response in acute unilateral UUT obstruction. MATERIAL AND METHODS Between 01/2008 and 01/2010, 18 patients with acute unilateral UUT obstruction due to calculi were prospectively enrolled to undergo kidney MRI with conventional, blood oxygen level-dependent (BOLD) and diffusion-weighted (DW) sequences on emergency admission and after release of obstruction. Functional imaging parameters of the obstructed and contralateral unobstructed kidneys derived from BOLD (apparent spin relaxation rate [R2*]) and DW (total apparent diffusion coefficient [ADCT], pure diffusion coefficient [ADCD] and perfusion fraction [FP]) sequences were assessed during acute UUT obstruction and after its release. RESULTS During acute obstruction, R2* and FP values were lower in the cortex (p=0.020 and p=0.031, respectively) and medulla (p=0.012 and p=0.190, respectively) of the obstructed compared to the contralateral unobstructed kidneys. After release of obstruction, R2* and FP values increased both in the cortex (p=0.016 and p=0.004, respectively) and medulla (p=0.071 and p=0.044, respectively) of the formerly obstructed kidneys to values similar to those found in the contralateral kidneys. ADCT and ADCD values did not significantly differ between obstructed and contralateral unobstructed kidneys during or after obstruction. CONCLUSIONS In our patients with acute unilateral UUT obstruction due to calculi, functional kidney MRI using BOLD and DW sequences allowed for the monitoring of pathophysiologic changes of obstructed kidneys during obstruction and after its release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To determine renal oxygenation changes associated with uninephrectomy and transplantation in both native donor kidneys and transplanted kidneys by using blood oxygenation level-dependent (BOLD) MR imaging. Materials and Methods The study protocol was approved by the local ethics committee. Thirteen healthy kidney donors and their corresponding recipients underwent kidney BOLD MR imaging with a 3-T imager. Written informed consent was obtained from each subject. BOLD MR imaging was performed in donors before uninephrectomy and in donors and recipients 8 days, 3 months, and 12 months after transplantation. R2* values, which are inversely related to tissue partial pressure of oxygen, were determined in the cortex and medulla. Longitudinal R2* changes were statistically analyzed by using repeated measures one-way analysis of variance with post hoc pair-wise comparisons. Results R2* values in the remaining kidneys significantly decreased early after uninephrectomy in both the medulla and cortex (P < .003), from 28.9 sec(-1) ± 2.3 to 26.4 sec(-1) ± 2.5 in the medulla and from 18.3 sec(-1) ± 1.5 to 16.3 sec(-1) ± 1.0 in the cortex, indicating increased oxygen content. In donors, R2* remained significantly decreased in both the medulla and cortex at 3 (P < .01) and 12 (P < .01) months. In transplanted kidneys, R2* remained stable during the first year after transplantation, with no significant change. Among donors, cortical R2* was found to be negatively correlated with estimated glomerular filtration rate (R = -0.47, P < .001). Conclusion The results suggest that BOLD MR imaging may potentially be used to monitor renal functional changes in both remaining and corresponding transplanted kidneys. (©) RSNA, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To prospectively determine the 3-year stability and potential changes of functional parameters in renal allograft recipients obtained from diffusion-weighted imaging (DWI) and blood oxygenation level-dependent (BOLD) MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is animportant differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose In this study we examine neuroretinal function in five amblyopes, who had been shown in previous functional MRI (fMRI) studies to have compromised function of the lateral geniculate nucleus (LGN), to determine if the fMRI deficit in amblyopia may have its origin at the retinal level. Methods We used slow flash multifocal ERG (mfERG) and compared averaged five ring responses of the amblyopic and fellow eyes across a 35 deg field. Central responses were also assessed over a field which was about 6.3 deg in diameter. We measured central retinal thickness using optical coherence tomography. Central fields were measured using the MP1-Microperimeter which also assesses ocular fixation during perimetry. MfERG data were compared with fMRI results from a previous study. Results Amblyopic eyes had reduced response density amplitudes (first major negative to first positive (N1-P1) responses) for the central and paracentral retina (up to 18 deg diameter) but not for the mid-periphery (from 18 to 35 deg). Retinal thickness was within normal limits for all eyes, and not different between amblyopic and fellow eyes. Fixation was maintained within the central 4° more than 80% of the time by four of the five participants; fixation assessed using bivariate contour ellipse areas (BCEA) gave rankings similar to those of the MP-1 system. There was no significant relationship between BCEA and mfERG response for either amblyopic or fellow eye. There was no significant relationship between the central mfERG eye response difference and the selective blood oxygen level dependent (BOLD) LGN eye response difference previously seen in these participants. Conclusions Retinal responses in amblyopes can be reduced within the central field without an obvious anatomical basis. Additionally, this retinal deficit may not be the reason why the LGN BOLD (blood oxygen level dependent) responses are reduced for amblyopic eye stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property.