961 resultados para BLUE-GREEN ALGAE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue-green and red photoluminescence (PL) emission in structurally disordered CaTiO3:Sm (CT:Sm) powders was observed at room temperature with laser excitation at 350.7 nm. The perovskite-like titanate CT:Sm powders prepared by a soft chemical processing at different temperatures of annealing were structurally characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES). The results indicate that the generation of the broad PL band is related to order-disorder degree in the perovskitelike structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfated polysaccharides derived from seaweed have shown great potential for use in the development of new drugs. In this study, we observed that a low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus terrificus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. Size exclusion chromatography experiments suggested that CrSP formed a stable complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction between negatively charged CrSP and the positively charged basic amino acid residues of sPLA2, because this interaction induced significant changes in sPLA2 enzymatic and pharmacological activities. CrSP caused a significant increase in sPLA2 enzymatic and bactericidal activity and increased its edematogenic effect. A pharmacological assay showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for use in humans and commercially raised animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The shoot density, leaf length and biomass of the seagrass Cymodocea nodosa (Ucria) Ascherson were found to severely decline in the last 17 years in the oceanic island of Gran Canaria (central Eastern Atlantic). Five seagrass meadows were sampled in summer and winter of 1994-1995 and in winter and summer 2011. The decrease in C. nodosa correlated with a 3-fold increase in the biomass of the green rhizophytic algae Caulerpa prolifera (Forsskål) J.V. Lamoroux over the same time period, although this increase varied notably among meadows. We also documented a negative correlation between the biomass of C. nodosa and C. prolifera at the island-scale, sampling 16 meadows in 2011. Experimental evidence demonstrated that C. prolifera can cause significant negative impacts on C. nodosa: plots with total (100%) removals of C. prolifera had ca. 2.5 more shoots and 3.5 times more biomass of C. nodosa, after 8 months, compared to plots with 50% removals and untouched control plots. Interference by C. prolifera appears to partially explain the decay in the abundance of C. nodosa populations in Gran Canaria. This study, however, did not identify potential underlying processes and/or environmental alterations that may have facilitated the disappearance of C. nodosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing and desiccation tolerance of 12 Klebsormidium strains, isolated from various habitats (aero-terrestrial, terrestrial, and hydro-terrestrial) from distinct geographical regions (Antarctic - South Shetlands, King George Island, Arctic - Ellesmere Island, Svalbard, Central Europe - Slovakia) were studied. Each strain was exposed to several freezing (-4°C, -40°C, -196°C) and desiccation (+4°C and +20°C) regimes, simulating both natural and semi-natural freeze-thaw and desiccation cycles. The level of resistance (or the survival capacity) was evaluated by chlorophyll a content, viability, and chlorophyll fluorescence evaluations. No statistical differences (Kruskal-Wallis tests) between strains originating from different regions were observed. All strains tested were highly resistant to both freezing and desiccation injuries. Freezing down to -196°C was the most harmful regime for all studied strains. Freezing at -4°C did not influence the survival of studied strains. Further, freezing down to -40°C (at a speed of 4°C/min) was not fatal for most of the strains. RDA analysis showed that certain Antarctic and Arctic strains did not survive desiccation at +4°C; however, freezing at -40°C, as well as desiccation at +20 °C was not fatal to them. On the other hand, other strains from the Antarctic, the Arctic, and Central Europe (Slovakia) survived desiccation at temperatures of +4°C, and freezing down to -40°C. It appears that species of Klebsormidium which occupy an environment where both seasonal and diurnal variations of water availability prevail, are well adapted to freezing and desiccation injuries. Freezing and desiccation tolerance is not species-specific nor is the resilience only found in polar strains as it is also a feature of temperate strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Character of metal accumulation in fractions of thalli of four species of marine green benthos algae under background and enhanced (0.3 mg/l) element concentrations in the environment was studied in short-term 24-hour experiments. Algae were shown to hold polysaccharide and protein mechanisms of metal accumulation. Variance analysis was applied to evaluate taxonomic and ecological features of metal distribution in fractions of thalli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA), resulting from increasing dissolved carbon dioxide (CO2) in surface waters, is likely to affect many marine organisms, particularly those that calcify. Recent OA studies have demonstrated negative and/or differential effects of reduced pH on growth, development, calcification and physiology, but most of these have focused on taxa other than calcareous benthic macroalgae. Here we investigate the potential effects of OA on one of the most common coral reef macroalgal genera,Halimeda. Species of Halimeda produce a large proportion of the sand in the tropics and are a major contributor to framework development on reefs because of their rapid calcium carbonate production and high turnover rates. On Palmyra Atoll in the central Pacific, we conducted a manipulative bubbling experiment to investigate the potential effects of OA on growth, calcification and photophysiology of 2 species of Halimeda. Our results suggest that Halimeda is highly susceptible to reduced pH and aragonite saturation state but the magnitude of these effects is species specific. H. opuntiasuffered net dissolution and 15% reduction in photosynthetic capacity, while H. taenicola did not calcify but did not alter photophysiology in experimental treatments. The disparate responses of these species to elevated CO2 partial -pressure (pCO2) may be due to anatomical and physiological differences and could represent a shift in their relative dominance in the face of OA. The ability for a species to exert biological control over calcification and the species specific role of the carbonate skeleton may have important implications for the potential effects of OA on ecological function in the future.