31 resultados para BIOPROSTHESES
Resumo:
PURPOSE: The dura mater bioprosthesis was developed in the Department of Cardiopneumology of the Hospital das Clínicas of the University of São Paulo Medical School in 1971. Here, we present the clinical results of the dura mater bioprosthesis over 30 years of follow-up. METHODS: We studied 70 consecutive patients who underwent mitral or tricuspid valve replacement with a dura mater bioprosthesis between January 1971 and August 1972. RESULTS: The early mortality was 10% (7 patients). The follow-up was 87% complete (9 patients were lost to follow-up). Two patients were alive and asymptomatic 30 years after valve replacement; 33 patients underwent reoperations due to valve dysfunction, and 19 died during the follow-up period. At 30 years, the actuarial survival was 49.2 ± 8.6%; freedom from rupture, 27.0 ± 10.2%; freedom from calcification, 78.8 ± 8.6%; and freedom from reoperation, 18.8 ± 7.5%. CONCLUSIONS: The dura mater bioprosthesis played an important role in the treatment of patients with mitral and tricuspid valve disease. The low rate of thromboembolism and the long period of follow-up without evidence of valve dysfunction, which occurred for several of our patients, are important characteristics of these bioprosthesis.
Resumo:
Bioprosthetic aortic valve replacement is the treatment of choice for patients over 65 years of age suffering from aortic valve disease, and for younger patients with contraindications to long-lasting anticoagulation. Despite several technical improvements to reduce the risk of structural valve degeneration (SVD), the risk of SVD still exists, in particular for hemodialysis patients and patients under 60 years of age at surgery. Redo open heart surgery is the treatment of choice in case of valve degeneration, but caries a higher surgical risk when elderly patients with comorbidities are concerned. In the last 5 years, transcatheter aortic "valve-in-valve" procedures represent a valid alternative to standard redo surgery in selected patients. Valve-in-valve procedures represent a less invasive approach in high-risk patients and the published results are very encouraging. Technical success rates of 100% have been reported, as have the absence of paravalvular leaks, acceptable trans-valvular gradients (depending on the size of the original bioprosthesis), and low complication rates. The current article focuses on choosing the correct transcutaneous valve to match the patient's existing bioprosthesis for valve-in-valve procedures.
Resumo:
OBJECTIVES Little is known about the stent deformability required for optimal stented heart valve bioprosthesis design. Therefore, two bioprosthetic valves with known good long-term clinical results were tested. The strain in the radial direction of the stent posts of these valves was compared with contemporary bioprosthetic valves and a native porcine aortic root. METHODS Medtronic Intact and Carpentier-Edwards Standard (CES), and four contemporary bioprostheses, including one self-expanding prosthesis, were tested with three sonomicrometry probes per valve fixed at commissure attachment points. The mean values from 2400 data points from three measurements of the interprobe distances were used to calculate the radius of the circle circumscribed around the three probes. Changes in the radius of the aortic root at pressures 70-90 and 120-140 mmHg (pressure during diastole and systole) and that of the stent posts at 70-90 and 0-10 mmHg (transvalvular pressure gradient during diastole and systole) were compared. RESULTS An increase in radius by 7.3 ± 2.6, 8.7 ± 0.0 and 3.9 ± 0.0% for the porcine aortic root, CES and Intact valves, respectively, was observed during transition from diastolic to systolic pressure and less for contemporary bioprostheses-mean 2.5 ± 0.9%, lowest 1.2 ± 0.0. CONCLUSIONS The results indicate that the radial deformability of bioprosthetic valve stent posts can be as low as 1.2% for xenoaortic and 3.0% for xenopericardial prostheses with no compromise of valve durability. Although these results suggest that valve stent post-deformability might not be of critical importance, a concrete answer to the question of the significance of stent deformability for valve durability can be obtained only by acquiring long-term follow-up results for valve prostheses with rigid stents.
Resumo:
The transapical transcatheter aortic valve implantation (TA-TAVI) in degenerated aortic bioprosthesis is an emerging therapy for surgically non-amenable patients. However, the presence of different types of aortic bioprostheses (stented and stentless), available in different sizes (19-27 mm), can be at the origin of important mismatches between the malfunctioning, degenerated aortic valves and the inner stent-valves implanted through transapical accesses (23 and 26 mm Edwards Sapien transcatheter stent-valves). We report an emergency TA-TAVI treatment of a severely regurgitant degenerated 23 mm Mitroflow aortic bioprosthesis (Sorin Group, Milano, Italy) implanted seven years earlier in an 80-year-old lady, and we reviewed the current available literature about transapical 'valve-in-valve' procedures to analyze the hemodynamic results and the ideal 'prosthesis-to-prosthesis' match.
Resumo:
Transcatheter aortic valve implantation (TAVI) is rapidly evolving as an alternative treatment option for elderly patients with severe symptomatic aortic stenosis and excessive risk for surgical intervention. Transcatheter valve-in-valve implantation is an alternative approach to redo-surgery for patients with degeneration of a bioprosthetic valve. Herein are reported three cases of successful transcatheter aortic valve-in-valve implantation for severely regurgitant bioprosthetic valves with a clinical follow up of more than 12 months.
Resumo:
BACKGROUND: The American College of Cardiology guidelines recommend 3 months of anticoagulation after replacement of the aortic valve with a bioprosthesis. However, there remains great variability in the current clinical practice and conflicting results from clinical studies. To assist clinical decision making, we pooled the existing evidence to assess whether anticoagulation in the setting of a new bioprosthesis was associated with improved outcomes or greater risk of bleeding. METHODS AND RESULTS: We searched the PubMed database from the inception of these databases until April 2015 to identify original studies (observational studies or clinical trials) that assessed anticoagulation with warfarin in comparison with either aspirin or no antiplatelet or anticoagulant therapy. We included the studies if their outcomes included thromboembolism or stroke/transient ischemic attacks and bleeding events. Quality assessment was performed in accordance with the Newland Ottawa Scale, and random effects analysis was used to pool the data from the available studies. I(2) testing was done to assess the heterogeneity of the included studies. After screening through 170 articles, a total of 13 studies (cases=6431; controls=18210) were included in the final analyses. The use of warfarin was associated with a significantly increased risk of overall bleeding (odds ratio, 1.96; 95% confidence interval, 1.25-3.08; P<0.0001) or bleeding risk at 3 months (odds ratio, 1.92; 95% confidence interval, 1.10-3.34; P<0.0001) compared with aspirin or placebo. With regard to composite primary outcome variables (risk of venous thromboembolism, stroke, or transient ischemic attack) at 3 months, no significant difference was seen with warfarin (odds ratio, 1.13; 95% confidence interval, 0.82-1.56; P=0.67). Moreover, anticoagulation was also not shown to improve outcomes at time interval >3 months (odds ratio, 1.12; 95% confidence interval, 0.80-1.58; P=0.79). CONCLUSIONS: Contrary to the current guidelines, a meta-analysis of previous studies suggests that anticoagulation in the setting of an aortic bioprosthesis significantly increases bleeding risk without a favorable effect on thromboembolic events. Larger, randomized controlled studies should be performed to further guide this clinical practice.
Resumo:
Major problems with valve bioprostheses are associated with progressive structural deterioration and calcification, directly associated with the use of glutaraldehyde (GA). This work describes the effects of GA processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties of 0.5% GA crosslinked bovine pericardium (BP). The results showed that while the treatment of 0.5% GA crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower GA concentration followed by the conventional treatment (0.5% GA). Improvements in mechanical properties probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base).The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive procedure for the manufacture of heart valve bioprostheses.
Resumo:
Grafts of biological tissues have been used since the 1960s as an alternative to the mechanical heart prostheses. Nowadays, the most consolidated treatment to bovine pericardial (BP) bioprostheses is the crosslinking with glutaraldehyde (GA), although GA may induce calcification in vivo. In previous work, our group demonstrated that electron beam irradiation applied to lyophilized BP in the absence of oxygen promoted crosslinks among collagen fibers of BP tissue. In this work, the incorporation of silk fibroin (SF) and chitosan (CHIT) in the BP not treated with GA was studied. The samples were irradiated and then analyzed for their cytotoxicity and the ability of adhesion and growth of endothelial cells. Initially, all samples showed cytotoxicity. However, after a few washing cycles, the cytotoxicity due to acetic acid and ethanol residues was removed from the biomaterial making it suitable for the biofunctional test. The samples modified with SF/CHIT and electron beam irradiated favored the adhesion and growth of endothelial cells throughout the tissue.
Resumo:
Objectives and Methods: Reoperations are an integral part of a cardiac surgeon's practice. We share our experience of 546 reoperations over the last 21 years to January 2000, with the focus directed towards the timing of reoperation, reducing the mortality and morbidity of reoperation and rereplacement aortic valve surgery, and understanding the important risk factors. In addition, the precise technical steps that facilitate careful successful explantation of various devices (allograft, stented and stentless xenografts, and mechanical valves) are detailed. Results: Optimal planned reoperation before deterioration to New York Heart Association Class III/IV levels and before unfavorable cardiac and comorbidity general system failure occurs has produced low mortality and morbidity as compared with first operation results. However, unfavorable delays and late rereferral result in mortality rates of up to 22% for emergency redo AVR for degenerated bioprostheses. Conclusion: Cardiac surgical units have the opportunity to establish a closer patient-surgeon relationship, which favors, when necessary, the optimal timing of reoperation. Knowledge of the more important risk factors and adherence to specific technical steps at explantation of various devices enhances satisfactory reoperation outcomes.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: The aim of this work was the follow-up and evaluation of valve replacement in children under 12 years of age. METHODS: Forty-four children less than 12 years old were underwent valve replacement at INCOR-HCFMUSP between January 1986 and December 1992. Forty (91%) were rheumatic, 39 (88.7%) were in functional classes II or IV, 19 (43.2%) were operated upon on an emergency basis, and 6 (13.6%) had atrial fibrillation. Biological prostheses (BP) were employed in 26 patients (59.1%), and mechanical prostheses (MP) in 18 (40.9%). Mitral valves were replaced in 30 (68.7%), aortic valves in 8 (18.2%), a tricuspid valve in 1 (2.3%), and double (aortic and mitral) valves in 5 (11.4) of the patients. RESULTS: Hospital mortality was of 4.5% (2 cases). The mean follow-up period was 5.8 years. Re-operations occurred in 63.3% of the patients with BP and in 12.5% of those with MP (p=0.002). Infectious endocarditis was present in 26.3% of the BP, but in none of the cases of MP (p=0.049). Thrombosis occurred in 2 (12.5%) and hemorrhage in one (6.5%) of the patients with a MP. Delayed mortality occurred in 5 (11.9%) of the patients over a mean period of 2.6 years; four had had BP and one had a MP (NS). Actuarial survival and re-operation-free curves after 10 years were respectively, 82.5±7.7 (SD)% and 20.6±15.9%. CONCLUSION: Patients with MP required fewer re-operation, had less infectious endocarditis and lower late mortality rates compared with patients with bioprostheses. The former, therefore, appear to be the best valve replacement for pediatric patients.
Resumo:
OBJECTIVE: To compare inverted-L mini-sternotomy performed above the sternal furcula with conventional sternotomy in patients with aortic valve diseases who undergo surgical treatment. METHODS: We operated upon 30 patients who had aortic valve lesions that had clinical and hemodynamic findings. All patients underwent inverted-L sternotomy, which extended from above the manubrium of the sternum to the 3rd right intercostal space, without opening the pleural cavity. Their ages ranged from 32 to 76 years, and 18 were males and 12 were females. We used negative pressure in a venous ¼-inch cannula, and the patients were maintained in Trendelemburg's position. Twenty-seven patients received bioprostheses with diameters ranging from 23 to 29mm. Three patients underwent only removal of the calcifications of the aortic valve leaflets and aortic commissurotomy. RESULTS: The mean duration of anoxic cardiac arrest was 63.11min. Access was considered good in all patients. One death was due to pulmonary and renal problems not related to the incision. All patients had a better recovery in the intensive care unit, got out of bed sooner, coughed more easily, and performed prophylactic physiotherapeutic maneuvers for respiratory problems more easily and with less pain in the incision. Early ambulation was more easily carried out by all patients. CONCLUSION: Mini-sternotomy proved to be better than the conventional sternotomy because it provided morecomfort for the patients in the early postoperative period, with less pain and greater desire for early ambulation and all its inherent advantages.
Resumo:
Standard surgical aortic valve replacement with a biological prosthesis remains the treatment of choice for low- and mid-risk elderly patients (traditionally >65 years of age) suffering from severe symptomatic aortic valve stenosis or insufficiency, and for young patients with formal contraindications to long-lasting anticoagulation. Unfortunately, despite the fact that several technical improvements have noticeably improved the resistance of pericardial and bovine bioprostheses to leaflet calcifications and ruptures, the risk of early valve failure with rapid degeneration still exists, especially for patients under haemodialysis and for patients <60 years of age at the time of surgery. Until now, redo open heart surgery under cardiopulmonary bypass and on cardioplegic arrest was the only available therapeutic option in case of bioprosthesis degeneration, but it carried a higher surgical risk when elderly patients with severe concomitant comorbidities were concerned. Since a few years, the advent of new transcatheter aortic valve procedures has opened new horizons in cardiac surgery and, in particular, the possibility of implanting stented valves within the degenerated stented bioprosthesis, the so-called 'valve-in-valve' (VinV) concept, has become a clinical practice in experienced cardiac centres. The VinV procedure represents a minimally invasive approach dedicated to high-risk redo patients, and published preliminary reports have shown a success rate of 100% with absence of significant valvular leaks, acceptable transvalvular gradients and low complication rate. However, this procedure is not riskless and the most important concerns are about the size mismatch and the right positioning within the degenerated bioprosthesis. In this article, we review the limited available literature about VinV procedures, underline important technical details for the positioning and provide guidelines to prevent valve-prosthesis mismatch comparing the three sizes of the only commercially available transapical device, the Edwards Sapien, with the inner diameter of three of the most commonly used stented bioprostheses.
Resumo:
IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS: Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES: Survival, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE: In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
OBJECTIVES Guidelines proposed bioprosthesis implantation for aortic valve disease if the patients were at least 65 years old at the time of surgery, with a trend towards even younger patients in recent years. Considering the adverse effects of lifetime anticoagulation, new biological valves (less prone to degeneration) and new technologies may lead patients and surgeons to different choices. Therefore, it is interesting to analyse the results of aortic bioprosthetic valve replacement in patients aged <65 years at the time of surgery. METHODS From January 2000 to December 2010, 84 patients aged <65 years at the time of surgery had undergone an aortic bio-prosthetic valve replacement. A mid-term follow-up [(FU) mean FU time: 54.4 ± 39.2 months] was done in August 2011 in all patients (FU completeness: 100%). Results were compared with patients who had a mechanical prosthetic aortic valve replacement during the same period. RESULTS The reoperation rate for structural valve degeneration (SVD) of bioprostheses was 6% and occurred exclusively among patients <56 years. Contraindications for anticoagulation determined the choice of a bioprosthesis among 83% of these patients. The personal preference to avoid anticoagulation was the leading cause in 68% of the older patients (56-65 years). Neurological complications occurred more frequently in the mechanical control group. CONCLUSIONS Reoperations for SVD after bioprosthesis implantation occurred exclusively among younger patients (<56 years), not suitable for systemic anticoagulation. Previous studies, together with our experience, are in favour of an age limit between 56 and 60 years, taking into consideration alternative transcatheter approaches to SVD treatment.