970 resultados para BIOMECHANICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoliosis is a spinal deformity, involving a side-to-side curvature of the spine in the coronal plane as well as a rotation of the spinal column in the transverse plane. The coronal curvature is measured using a Cobb angle. If the deformity is severe, treatment for scoliosis may require surgical intervention whereby a rod is attached to the spinal column to correct the abnormal curvature. In order to provide surgeons with an improved ability to predict the likely outcomes following surgery, techniques to create patient-specific finite element models (FEM) of scoliosis patients treated at the Mater Children’s Hospital (MCH) in Brisbane are being developed and validated. This paper presents a comparison of the simulated and clinical data for a scoliosis patient treated at MCH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoliosis is a spinal deformity that requires surgical correction in progressive cases. In order to optimize surgical outcomes, patient-specific finite element models are being developed by our group. In this paper, a single rod anterior correction procedure is simulated for a group of six scoliosis patients. For each patient, personalised model geometry was derived from low-dose CT scans, and clinically measured intra-operative corrective forces were applied. However, tissue material properties were not patient-specific, being derived from existing literature. Clinically, the patient group had a mean initial Cobb angle of 47.3 degrees, which was corrected to 17.5 degrees after surgery. The mean simulated post-operative Cobb angle for the group was 18.1 degrees. Although this represents good agreement between clinical and simulated corrections, the discrepancy between clinical and simulated Cobb angle for individual patients varied between -10.3 and +8.6 degrees, with only three of the six patients matching the clinical result to within accepted Cobb measurement error of +-5 degrees. The results of this study suggest that spinal tissue material properties play an important role in governing the correction obtained during surgery, and that patient-specific modelling approaches must address the question of how to prescribe patient-specific soft tissue properties for spine surgery simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomechanics involves research and analysis of the mechanisms of living organisms. This can be conducted on multiple levels and represents a continuum from the molecular, wherein biomaterials such as collagen and elastin are considered, to the tissue, organ and whole body level. Some simple applications of Newtonian mechanics can supply correct approximations on each level, but precise details demand the use of continuum mechanics. Sport biomechanics uses the scientific methods of mechanics to study the effects of forces on the sports performer and considers aspects of the behaviour of sports implements, equipment, footwear and surfaces. There are two main aims of sport biomechanics, that is, the reduction of injury and the improvement of performance (Bartlett, 1999). Aristotle (384-322 BC) wrote the first book on biomechanics, De Motu Animalium, translated as On the Movement of Animals. He saw animals' bodies as mechanical systems, but also pursued questions that might explain the physiological difference between imagining the performance of an action and actually doing it. Some simple examples of biomechanics research include the investigation of the forces that act on limbs, the aerodynamics of animals in flight, the hydrodynamics of objects moving through water and locomotion in general across all forms of life, from individual cells to whole organisms...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of force generation and transference via microfilament networks are crucial to the understandings of mechanobiology of cellular processes in living cells. However, there exists an enormous challenge for all-atom physics simulation of real size microfilament networks due to scale limitation of molecular simulation techniques. Following biophysical investigations of constitutive relations between adjacent globular actin monomers on filamentous actin, a hierarchical multiscale model was developed to investigate the biomechanical properties of microfilament networks. This model was validated by previous experimental studies of axial tension and transverse vibration of single F-actin. The biomechanics of microfilament networks can be investigated at the scale of real eukaryotic cell size (10 μm). This multiscale approach provides a powerful modeling tool which can contribute to the understandings of actin-related cellular processes in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Magnetic Resonance microimaging (μMRI) to study the compressive behaviour of synthetic elastin. Compression-induced changes in the elastin sample were quantified using longitudinal and transverse spin relaxation rates (R1 and R2, respectively). Spatially-resolved maps of each spin relaxation rate were obtained, allowing the heterogeneous texture of the sample to be observed with and without compression. Compression resulted in an increase of both the mean R1 and the mean R2, but most of this increase was due to sub-locations that exhibited relatively low R1 and R2 in the uncompressed state. This behaviour can be described by differential compression, where local domains in the hydrogel with a relatively low biopolymer content compress more than those with a relatively high biopolymer content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.