868 resultados para BIOLOGICALLY RELEVANT
Resumo:
This paper reports the reaction of SnMe2Cl2 with adenosine, guanosine and inosine in aqueous solution at pH 4.5. The nucleosides give probably polymeric species in which there is monodentate coordination to O2′ of the ribose ring as indicated by 80 MHz PMR.
Resumo:
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This doctoral thesis deals with the development of novel organocatalytic strategies for asymmetric transformation. The intrinsic versatility of organocatalysis and the use of different activation modes have been exploited to achieve new catalytic enantioselective processes, towards the synthesis of biologically relevant scaffolds. The most investigated organocatalytic system have been those based on H-bond interaction (such as chiral thioureas or phosphoric acids) as well as the ones based on aminocatalysis. Despite conceptually distinct, the transformations detailed in this Thesis are linked together by simple and recurring modes of activation, induction and reactivity, promoted by the catalysts employed. The chemical diversity of the challenges encountered allows to get a precious overall view on organocatalysis, highlighting that enormous chemical diversity can be created by judicious choice of select catalyst.
Resumo:
Angiogenesis, i.e. the development and growth of blood vessels, is a major topic of research as it plays an important role in normal development and in various pathologies. Recent evidence revealed the existence of different mechanisms of blood vessel growth, including sprouting and intussusceptive angiogenesis, vascular mimicry, and blood vessel cooption. The latter two have only been observed in tumor growth, but sprouting and intussusceptive angiogenesis also occur in healthy, physiologically growing tissues. Despite this variety of angiogenic mechanisms, most of the current research is focused on the mechanism of sprouting angiogenesis because this mechanism was first described and because most existing experimental models are related to sprouting angiogenesis. Consequently, the mechanism of intussusceptive angiogenesis is often overlooked in angiogenesis research. Here, the mechanism of intussusceptive angiogenesis is reviewed and the current techniques and models for investigating intussusceptive angiogenesis are summarized. In addition, other mechanisms of vascular growth are briefly reviewed.
Resumo:
The number of elderly people is growing in western populations, but only few maximal performance data exist for people >75 years, in particular for European octogenarians. This study was performed to characterize maximal performance of 55 independently living subjects (32 women, 81.1 +/- 3.4 years; 23 men, 81.7 +/- 2.9 years) with a focus on sex differences. Maximal performance was determined in a ramp test to exhaustion on a bicycle ergometer with ergospirometry, electrocardiogram and blood lactate measurements. Maximal isometric extension strength of the legs (MEL) was measured on a force platform in a seated position. Body composition was quantified by X-ray absorptiometry. In >25% of the subjects, serious cardiac abnormalities were detected during the ramp test with men more frequently being affected than women. Maximal oxygen consumption and power output were 18.2 +/- 3.2 versus 25.9 +/- 5.9 ml min(-1) kg(-1) and 66 +/- 12 versus 138 +/- 40 W for women versus men, with a significant sex difference for both parameters. Men outperformed women for MEL with 19.0 +/- 3.8 versus 13.6 +/- 3.3 N kg(-1). Concomitantly, we found a higher proportion of whole body fat in women (32.1 +/- 6.2%) compared to men (20.5 +/- 4.4%). Our study extends previously available maximal performance data for endurance and strength to independently living European octogenarians. As all sex-related differences were still apparent after normalization to lean body mass, it is concluded that it is essential to differentiate between female and male subjects when considering maximal performance parameters in the oldest segment of our population.
Resumo:
Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F(2)-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.
Resumo:
A large number of drugs and biologically relevant molecules contain heterocyclic systems. Often the presence of hetero atoms or groupings imparts preferential specificities in their biological responses. Amongst the heterocyclic systems, thiazolidine is a biologically important scaffold known to be associated with several biological activities. Some of the prominent biological responses attributed to this skeleton are antiviral, antibacterial, antifungal, antihistaminic, hypoglycemic, anti-inflammatory activities. This diversity in the biological response profiles of thiazolidine has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. Many of these synthetic and biological explorations have been subsequently analyzed in detailed quantitative structure-activity relationship (QSAR) studies to correlate the respective structural features and physicochemical properties with the activities to identify the important structural components in deciding their activity behavior. In this, drugs or any biologically active molecules may be viewed as structural frames consisting of strategically positioned functional groups that will interact effectively with the complementary groups/sites of the receptor. With this in focus, the present article reviews the QSAR studies of diverse biological activities of the thiazolidines published during the past decade.
Resumo:
Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.
Resumo:
The detection and potential treatment of oxidative stress in biological systems has been explored using isoindoline-based nitroxide radicals. A novel tetraethyl-fluorescein nitroxide was synthesised for its use as a profluorescent probe for redox processes in biological systems. This tetraethyl system, as well as a tetramethyl-fluorescein nitroxide, were shown to be sensitive and selective probes for superoxide in vitro. The redox environment of cellular systems was also explored using the tetramethylfluorescein species based on its reduction to the hydroxylamine. Flow cytometry was employed to assess the extent of nitroxide reduction, reflecting the overall cellular redox environment. Treatment of normal fibroblasts with rotenone and 2-deoxyglucose resulted in an oxidising cellular environment as shown by the lack of reduction of the fluorescein-nitroxide system. Assessment of the tetraethyl-fluorescein nitroxide system in the same way demonstrated its enhanced resistance to reduction and offers the potential to detect and image biologically relevant reactive oxygen species directly. Importantly, these profluorescent nitroxide compounds were shown to be more effective than the more widely used and commercially available probes for reactive oxygen species such as 2’,7’-dichlorodihydrofluorescein diacetate. Fluorescence imaging of the tetramethyl-fluorescein nitroxide and a number of other rhodamine-nitroxide derivatives was undertaken, revealing the differential cellular localisation of these systems and thus their potential for the detection of redox changes in specific cellular compartments. As well as developing novel methods for the detection of oxidative stress, a number of novel isoindoline nitroxides were synthesised for their potential application as small-molecule antioxidants. These compounds incorporated known pharmacophores into the isoindoline-nitroxide structure in an attempt to increase their efficacy in biological systems. A primary and a secondary amine nitroxide were synthesised which incorporated the phenethylamine backbone of the sympathomimetic amine class of drugs. Initial assessment of the novel primary amine derivative indicated a protective effect comparable to that of 5-carboxy-1,1,3,3- tetramethylisoindolin-2-yloxyl. Methoxy-substituted nitroxides were also synthesised as potential antioxidants for their structural similarity to some amphetamine type stimulants. A copper-catalysed methodology provided access to both the mono- and di-substituted methoxy-nitroxides. Deprotection of the ethers in these compounds using boron tribromide successfully produced a phenolnitroxide, however the catechol moiety in the disubstituted derivative appeared to undergo reaction with the nitroxide to produce quinone-like degradation products. A novel fluoran-nitroxide was also synthesised from the methoxy-substituted nitroxide, providing a pH-sensitive spin probe. An amino-acid precursor containing a nitroxide moiety was also synthesised for its application as a dual-action antioxidant. N-Acetyl protection of the nitroxide radical was necessary prior to the Erlenmeyer reaction with N-acetyl glycine. Hydrolysis and reduction of the azlactone intermediate produced a novel amino acid precursor with significant potential as an effective antioxidant.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within RUNX2 have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture. Carriers of the 11A allele were found to be nearly twice as likely to have sustained fracture. Within the fracture category, there was a significant tendency of 11A carriers to present with fractures of bones of intramembranous origin compared to bones of endochondral origin (p=0.005). In a population of random subjects, the 11A allele was associated with decreased levels of serum collagen cross links (CTx, p=0.01), suggesting decreased bone turnover. The transactivation function of the 11A allele was quantitatively decreased. Interestingly, we found no effect of the 11A allele on BMD at multiple skeletal sites, although these were not the sites where a relationship with fracture was most evident. These findings suggest that the 11A allele is a biologically relevant polymorphism that influences serum CTx and confers enhanced fracture risk in a site-selective manner related to intramembranous bone ossification.