980 resultados para BIOGENIC HYDROCARBONS
Resumo:
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H-2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450-550 degrees C at 2.8-4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. delta C-13 values for methane range from -22.4% to -5.4%, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in delta C-13 isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks. (C) 2006 Elsevier BV. All rights reserved.
Resumo:
Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m(-2) s(-1) due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.
Resumo:
The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.
Resumo:
Sekundäres organisches Aerosol (SOA) ist ein wichtiger Bestandteil von atmosphärischen Aerosolpartikeln. Atmosphärische Aerosole sind bedeutsam, da sie das Klima über direkte (Streuung und Absorption von Strahlung) und indirekte (Wolken-Kondensationskeime) Effekte beeinflussen. Nach bisherigen Schätzungen ist die SOA-Bildung aus biogenen Kohlenwasserstoffen global weit wichtiger als die SOA-Bildung aus anthropogenen Kohlenwasserstoffen. Reaktive Kohlenwasserstoffe, die in großen Mengen von der Vegetation emittiert werden und als die wichtigsten Vorläufersubstanzen für biogenes SOA gelten, sind die Terpene. In der vorliegenden Arbeit wurde eine Methode entwickelt, welche die Quantifizierung von aciden Produkten der Terpen-Oxidation ermöglicht. Die Abscheidung des größenselektierten Aerosols (PM 2.5) erfolgte auf Quarzfilter, die unter Zuhilfenahme von Ultraschall mittels Methanol extrahiert wurden. Nach Aufkonzentrierung und Lösungsmittelwechsel auf Wasser sowie Standardaddition wurden die Proben mit einer Kapillar-HPLC-ESI-MSn-Methode analysiert. Das verwendete Ionenfallen-Massenspektrometer (LCQ-DECA) bietet die Möglichkeit, Strukturaufklärung durch selektive Fragmentierung der Qasimolekülionen zu betreiben. Die Quantifizierung erfolgte teilweise im MS/MS-Modus, wodurch Selektivität und Nachweisgrenze verbessert werden konnten. Um Produkte der Terpen-Oxidation zu identifizieren, die nicht als Standards erhältlich waren, wurden Ozonolysexperimente durchgeführt. Dadurch gelang die Identifizierung einer Reihe von Oxidationsprodukten in Realproben. Neben schon bekannten Produkten der Terpen-Oxidation konnten einige Produkte erstmals in Realproben eindeutig als Produkte des α Pinens nachgewiesen werden. In den Proben der Ozonolyseexperimente konnten auch Produkte mit hohem Molekulargewicht (>300 u) nachgewiesen werden, die Ähnlichkeit zeigen zu den als Dimeren oder Polymeren in der Literatur bezeichneten Substanzen. Sie konnten jedoch nicht in Feldproben gefunden werden. Im Rahmen von 5 Messkampagnen in Deutschland und Finnland wurden Proben der atmosphärischen Partikelphase genommen. Die Quantifizierung von Produkten der Oxidation von α-Pinen, β-Pinen, 3-Caren, Sabinen und Limonen in diesen Proben ergab eine große zeitliche und örtliche Variationsbreite der Konzentrationen. Die Konzentration von Pinsäure bewegte sich beispielsweise zwischen etwa 0,4 und 21 ng/m³ während aller Messkampagnen. Es konnten stets Produkte verschiedener Terpene nachgewiesen werden. Produkte einiger Terpene eignen sich sogar als Markersubstanzen für verschiedene Pflanzenarten. Sabinen-Produkte wie Sabinsäure können als Marker für die Emissionen von Laubbäumen wie Buchen oder Birken verwendet werden, während Caren-Produkte wie Caronsäure als Marker für Nadelbäume, speziell Kiefern, verwendet werden können. Mit den quantifizierten Substanzen als Marker wurde unter zu Hilfenahme von Messungen des Gehaltes an organischem und elementarem Kohlenstoff im Aerosol der Anteil des sekundären organischen Aerosols (SOA) errechnet, der von der Ozonolyse der Terpene stammt. Erstaunlicherweise konnten nur 1% bis 8% des SOA auf die Ozonolyse der Terpene zurückgeführt werden. Dies steht im Gegensatz zu der bisherigen Meinung, dass die Ozonolyse der Terpene die wichtigste Quelle für biogenes SOA darstellt. Gründe für diese Diskrepanz werden in der Arbeit diskutiert. Um die atmosphärischen Prozesse der Bildung von SOA vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.
Resumo:
A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively. Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.
Resumo:
The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.
Resumo:
Gold in the quartz-pebble conglomerates of the late Archean Witwatersrand Basin, South Africa, is often intimately associated with carbonaceous matter of organic/biogenic origin which occurs in the form of stratiform carbon seams and paragenetically late bitumen nodules. Both carbon forms are believed to be formed by solidification of migrating hydrocarbons. This paper presents bulk and molecular chemical and stable carbon isotope data for the carbonaceous matter, all of which are used to provide a clue to the source of the hydrocarbons. These data are compared with those from intra-basinal shales and overlying dolostone of the Transvaal Supergroup. The delta C-13 values of the extracts from the Witwatersrand carbonaceous material show small differences (up to 2.4 parts per thousand) compared to the associated insoluble organic matter. This suggests that the auriferous rocks were stained by mobile hydrocarbons produced by thermal and oxidative alteration of indigenous bitumens, a contribution from hydrocarbons derived from intra-basinal Witwatersrand shales cannot be excluded. Individual aliphatic hydrocarbons of the various carbonaceous materials were subjected to compound specific isotope analysis using on-line gas chromatography/combustion/stable isotope ratio mass spectrometry (GC/C/IRMS). The limited variability of the molecular parameters and uniform delta C-13 values of individual n-alkanes (-31.1 +/- 1.7 parts per thousand) and isoprenoids (-30.7 +/- 1.1 parts per thousand) in the Witwatersrand samples exclude the mixing of oils from different sources. Carbonaceous matter in the dolostones shows distinctly different bulk and molecular isotope characteristics and thus cannot have been the source of the hydrocarbons in the Witwatersrand deposits. All the various forms of Witwatersrand carbon appear indigenous to the Witwatersrand Basin, and the differences between them are explained by variable, in general probably short (centimeter- to meter-scale) hydrocarbon migration during diagenesis and subsequent hydrothermal infiltration. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This study was conducted at three sites of different characteristics in Sao Paulo State Sao Paulo (SPA), Piracicaba (PRB) and Mate Atlantica Forest (MAT) PM(10), n-alkanes. pristane and phytane, PAHs, water-soluble ions and biomass burning tracers like levoglucosan and retene, were determined in quartz fiber filters. Samplings occurred on May 8th to August 8th, 2007 at the MAT site; on August 15th to 29th in 2007 and November 10th to 29th in 2008 at the PRB site and, March 13th to April 4th in 2007 and August 7th to 29th in 2008 at the SPA site Aliphatic compounds emitted biogenically were less abundant at the urban sites than at the forest site, and its distribution showed the influence of tropical vascular plants Air mass transport front biomass burning regions is likely to impact the sites with specific molecular markers The concentrations of all species were variable and dependent of seasonal changes In the most dry and polluted seasons, n-alkane and canon total concentrations were similar between the megacity and the biomass burning site PAHs and inorganic ion abundances were higher at Sao Paulo than Piracicaba, yet, the site influenced by biomass burning seems lobe the most impacted by the organic anion abundance in the atmosphere Pristane and phytane confirm the contamination by petroleum residues at urban sites, at the MAT site, biological activity and long range transport of pollutants might influence the levels of pristane (C) 2010 Elsevier B V All rights reserved
Resumo:
C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.
Resumo:
The Rainbow Hydrothermal Field (36°N, Mid-Atlantic Ridge) is one of three presently known fields related to serpentinization of ultramafic rocks accompanied by formation of hydrogen- and methane rich solutions. Gas chromatographic and molecular gas chromatographic - mass spectrometric investigations of sulfide ores and sediments from this field confirmed predominantly biological nature of bitumoids related to high-temperature transformation of biomass of the hydrothermal biological community. At the same time ores of the Rainbow field contain significant amounts of compounds that are not directly related to biogenic synthesis. This fact suggests possibility of abiogenic synthesis of methane and even complex hydrocarbons during serpentinization of ultramafic rocks.
Resumo:
The objective of this study is to investigate hydrocarbon species and amounts released by red mangrove foliage and determine if these quantities warrant future research on atmospheric chemical processing of these compounds. The field investigation took place during July 2001 at Key Largo, Florida Bay, Florida. Foliage still attached to plants was enclosed in cuvettes while air of known flow rates circulated around leaves to study, hydrocarbon emissions. Cuvette air samples underwent gas chromatographic analyses to determine species and amounts of hydrocarbons released by mangrove foliage. Red mangrove foliage emits isoprene and trace amounts of the monoterpenes of alpha-pinene, beta-pinene, camphene, and d-limonene. The mangrove flowers released these latter compounds in amounts ranging from 0.5 to 10 mg (monoterpene) per gram of dry biomass per hour. These fluxes are normalized to, the foliage temperature of 30 degreesC. When normalized to the foliage temperature of 30 degreesC and light levels of 1000 mumol m(-2) s(-1), isoprene emission rates as high as 0.092 +/- 0.109 mug (isoprene) per gram of dry biomass per hour were measured. Compared to terrestrial forest ecosystems, red mangroves are low isoprene emitters. During peak flowering periods in the summertime, however, red mangroves may emit sufficient amounts of monoterpenes to alter ground-level ozone concentrations and contribute to biogenic aerosol formation.
Resumo:
Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.
Resumo:
In an investigation of gas hydrates in deep ocean sediments, gas samples from Deep Sea Drilling Project Site 533 on the Blake Outer Ridge in the northwest Atlantic were obtained for molecular and isotopic analyses. Gas samples were collected from the first successful deployment of a pressure core barrel (PCB) in a hydrate region. The pressure decline curves from two of the four PCB retrievals at in situ pressures suggested the presence of small amounts of gas hydrates. Compositional and isotopic measurements of gases from several points along the pressure decline curve indicated that (1) biogenic methane (d13C = -68 per mil; C1/C2 = 5000) was the dominant gas (>90%); (2) little fractionation in the C1/C2 ratio or the C carbon isotopic composition occurred as gas hydrates decomposed during pressure decline experiments; (3) the percent of C3, i-C4, and CO2 degassed increased as the pressure declined, indicating that these molecules may help stabilize the hydrate structure; (4) excess nitrogen was present during initial degassing; and (5) C1/C2 ratios and isotopic ratios of C gases were similar to those obtained from conventional core sampling. The PCB gas also contained trace amounts of saturated, acyclic, cyclic, and aromatic C5-C14 hydrocarbons, as well as alkenes and tetrahydrothiophenes. Gas from a decomposed specimen of gas hydrate had similar molecular and isotopic ratios to the PCB gas (d13C of -68 per mil for methane and a C1/C2 ratio of about 6000). Regular trends in the d13C of methane (about -95 to -60 per mil) and C1/C2 ratios (about 25000 to 2000) were observed with depth. Capillary gas chromatography (GC) and total scanning fluorescence measurements of extracted organic material were characteristic of hydrocarbons dominated by a marine source, though significant amounts of perylene were also present.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
In the present study, semi-purified laccase from Trametes versicolor was applied for the synthesis of silver nanoparticles, and the properties of the produced nanoparticles were characterized. All of the analyses of the spectra indicated silver nanoparticle formation. A complete characterization of the silver nanoparticles showed that a complex of silver nanoparticles and silver ions was produced, with the majority of the particles having a Ag(2+) chemical structure. A hypothetical mechanistic scheme was proposed, suggesting that the main pathway that was used was the interaction of silver ions with the T1 site of laccase, producing silver nanoparticles with the concomitant inactivation of laccase activity and posterior complexing with silver ions.