856 resultados para BIODIESEL FUELS
Resumo:
This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Resumo:
The aim of this study was investigate the consolidation of the biodiesel fuel used in (a) engines of urban and intercity bus companies, (b) a stationary engine. It was necessary to investigate and analyze, technologically, if the biodiesel fuels were presenting troubleshooting relative to wear of parts lied to fuel and to evaluate the consumption fluctuations of this fuel. The urban and intercity bus companies, localized in Natal, Rio Grande do Norte state, Brazil, had 41 and 12 vehicles, respectively. It were analyzed datasheet of each one vehicle during three years, since 2008 until 2010 and were interviewed the management of the maintenance team of bus companies relative to aspects concerning the substitution of the diesel fuel by the B5 biodiesel. The second aim of this study was visually inspect the wear of the parts directly lied to combustion process. For this reason, it was investigated a stationary engine, manufactured by Branco BD5, 5 HP of power, fueled by (a) diesel, (b) biodiesel B5, (c) biodiesel B20 and (d) diesel or biodiesel, both contaminated by distilled water. In this engine, its power utilizing biodiesel B5 versus diesel was lower about 5.2% and, in the investigated case of B20 versus diesel, it was lower around 11.5%
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
The substitution of diesel by biodiesel meets the current scenario to increase the consumption of alternative energy sources promoting sustainable development of a country. However, the production of biodiesel concurrently generates the formation of glycerine in the process is a by-product. The main application of glycerine is in the food industry, cosmetics, soaps, pharmaceuticals, among others, but these segments are not capable of absorbing the generated volume of glycerine, whereas the total volume of the biodiesel produced about 10% correspond to glycerine. Glycerine obtained from the transesterification reaction (necessary for production of biodiesel) triglycerides and alcohol contains certain impurities such as water, salts, esters, alcohol, and residual oil, which decrease the value. Thus, the purification process or the direct use of glycerine become essential to make it competitive biodiesel production process. This work aims to evaluate the different processes of purification and the use of glycerine obtained as by-product in the production of biodiesel. The research was theoretical, based on technical articles and theses published on this subject, and from these databases was established a summary of the most important processes
Resumo:
The application of heterogeneous catalysts for the manufacture of renewable biodiesel fuels offers an exciting, alternative clean chemical technology to current energy intensive processes employing soluble base catalysts. We recently synthesised tuneable MgO nanocrystals as efficent solid base catalysts for biodiesel synthesis, and have developed a simple X-ray spectroscopic method to quantitatively determine surface basicity, thereby providing a rapid screening tool for predicting the reactivity of new solid base catalysts. Promotion of these MgO nanocrystals through Cs doping dramatically enhances biodiesel production rates due to the formaion of a mixed Cs Mg(CO ) phase. These MgO derived nanocatalysts permit energy efficent, continuous processing of diverse, sustainable oil feedstocks in flow reactors.
Resumo:
Biodiesel is a renewable fuel that has been shown to reduce many exhaust emissions, except oxides of nitrogen (NOx), in diesel engine cars. This is of special concern in inner urban areas that are subject to strict environmental regulations, such as EURO norms. Also, the use of pure biodiesel (B100) is inhibited because of its higher NOx emissions compared to petroleum diesel fuel. The aim of this present work is to investigate the effect of the iodine value and cetane number of various biodiesel fuels obtained from different feed stocks on the combustion and NOx emission characteristics of a direct injection (DI) diesel engine. The biodiesel fuels were chosen from various feed stocks such as coconut, palm kernel, mahua (Madhuca indica), pongamia pinnata, jatropha curcas, rice bran, and sesame seed oils. The experimental results show an approximately linear relationship between iodine value and NOx emissions. The biodiesels obtained from coconut and palm kernel showed lower NOx levels than diesel, but other biodiesels showed an increase in NOx. It was observed that the nature of the fatty acids of the biodiesel fuels had a significant influence on the NOx emissions. Also, the cetane numbers of the biodiesel fuels are affected both premixed combustion and the combustion rate, which further affected the amount of NOx formation. It was concluded that NOx emissions are influenced by many parameters of biodiesel fuels, particularly the iodine value and cetane number.
Resumo:
Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.