955 resultados para BINARY RESPONSE MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valuation of projects for the preservation of water resources provides important information to policy makers and funding institutions. Standard contingent valuation models rely on distributional assumptions to provide welfare measures. Deviations from assumed and actual distribution of benefits are important when designing policies in developing countries, where inequality is a concern. This article applies semiparametric methods to obtain estimates of the benefit from a project for the preservation of an important Brazilian river basin. These estimates lead to significant differences from those obtained using the standard parametric approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prognosis for lung cancer patients remains poor. Five year survival rates have been reported to be 15%. Studies have shown that dose escalation to the tumor can lead to better local control and subsequently better overall survival. However, dose to lung tumor is limited by normal tissue toxicity. The most prevalent thoracic toxicity is radiation pneumonitis. In order to determine a safe dose that can be delivered to the healthy lung, researchers have turned to mathematical models predicting the rate of radiation pneumonitis. However, these models rely on simple metrics based on the dose-volume histogram and are not yet accurate enough to be used for dose escalation trials. The purpose of this work was to improve the fit of predictive risk models for radiation pneumonitis and to show the dosimetric benefit of using the models to guide patient treatment planning. The study was divided into 3 specific aims. The first two specifics aims were focused on improving the fit of the predictive model. In Specific Aim 1 we incorporated information about the spatial location of the lung dose distribution into a predictive model. In Specific Aim 2 we incorporated ventilation-based functional information into a predictive pneumonitis model. In the third specific aim a proof of principle virtual simulation was performed where a model-determined limit was used to scale the prescription dose. The data showed that for our patient cohort, the fit of the model to the data was not improved by incorporating spatial information. Although we were not able to achieve a significant improvement in model fit using pre-treatment ventilation, we show some promising results indicating that ventilation imaging can provide useful information about lung function in lung cancer patients. The virtual simulation trial demonstrated that using a personalized lung dose limit derived from a predictive model will result in a different prescription than what was achieved with the clinically used plan; thus demonstrating the utility of a normal tissue toxicity model in personalizing the prescription dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doutoramento em Matemática.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at evaluating how effective is knowledge disclosure in attenuating institutional negative reactions caused by uncertainties brought by firms’ new strategies that respond to novel technologies. The empirical setting is from an era of technological ferment, the period of the introduction of the voice over internet protocol (VoIP) in the USA in the early 2000’s. This technology led to the convergence of the wireline telecommu- nications and cable television industries. The Institutional Brokers’ Estimate System (also known as the I/B/E/S system) was used to capture reactions of securities analysts, a revealed important source of institutional pressure on firms’ strategies. For assessing knowledge disclosure, a coding technique and a established content analysis framework were used to quantitatively measure the non-numerical and unstructured data of transcripts of business events occurred at that time. Eventually, several binary response models were tested in order to assess the effect of knowledge disclosure on the probability of institutional positive reactions. The findings are that the odds of favorable institutional reactions increase when a specific kind of knowledge is disclosed. It can be concluded that knowledge disclosure can be considered as a weapon in technological changes situations, attenuating adverse institutional reactions to the companies’ strategies in environments of technological changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extremal quantile index is a concept that the quantile index will drift to zero (or one)

as the sample size increases. The three chapters of my dissertation consists of three

applications of this concept in three distinct econometric problems. In Chapter 2, I

use the concept of extremal quantile index to derive new asymptotic properties and

inference method for quantile treatment effect estimators when the quantile index

of interest is close to zero. In Chapter 3, I rely on the concept of extremal quantile

index to achieve identification at infinity of the sample selection models and propose

a new inference method. Last, in Chapter 4, I use the concept of extremal quantile

index to define an asymptotic trimming scheme which can be used to control the

convergence rate of the estimator of the intercept of binary response models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use panel data from the U. S. Health and Retirement Study, 1992-2002, to estimate the effect of self-assessed health limitations on the active labor market participation of older men. Self-assessments of health are likely to be endogenous to labor supply due to justification bias and individual-specific heterogeneity in subjective evaluations. We address both concerns. We propose a semiparametric binary choice procedure that incorporates nonadditive correlated individual-specific effects. Our estimation strategy identifies and estimates the average partial effects of health and functioning on labor market participation. The results indicate that poor health plays a major role in labor market exit decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review several asymmetrical links for binary regression models and present a unified approach for two skew-probit links proposed in the literature. Moreover, under skew-probit link, conditions for the existence of the ML estimators and the posterior distribution under improper priors are established. The framework proposed here considers two sets of latent variables which are helpful to implement the Bayesian MCMC approach. A simulation study to criteria for models comparison is conducted and two applications are made. Using different Bayesian criteria we show that, for these data sets, the skew-probit links are better than alternative links proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This paper is concerned with checking goodness-of-fit of binary logistic regression models. For the practitioners of data analysis, the broad classes of procedures for checking goodness-of-fit available in the literature are described. The challenges of model checking in the context of binary logistic regression are reviewed. As a viable solution, a simple graphical procedure for checking goodness-of-fit is proposed. METHODS: The graphical procedure proposed relies on pieces of information available from any logistic analysis; the focus is on combining and presenting these in an informative way. RESULTS: The information gained using this approach is presented with three examples. In the discussion, the proposed method is put into context and compared with other graphical procedures for checking goodness-of-fit of binary logistic models available in the literature. CONCLUSION: A simple graphical method can significantly improve the understanding of any logistic regression analysis and help to prevent faulty conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pharmacodynamics (PD) is the study of the biochemical and physiological effects of drugs. The construction of optimal designs for dose-ranging trials with multiple periods is considered in this paper, where the outcome of the trial (the effect of the drug) is considered to be a binary response: the success or failure of a drug to bring about a particular change in the subject after a given amount of time. The carryover effect of each dose from one period to the next is assumed to be proportional to the direct effect. It is shown for a logistic regression model that the efficiency of optimal parallel (single-period) or crossover (two-period) design is substantially greater than a balanced design. The optimal designs are also shown to be robust to misspecification of the value of the parameters. Finally, the parallel and crossover designs are combined to provide the experimenter with greater flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on computational models development and its applications on demand response, within smart grid scope. A prosumer model is presented and the corresponding economic dispatch problem solution is analyzed. The prosumer solar radiation production and energy consumption are forecasted by artificial neural networks. The existing demand response models are studied and a computational tool based on fuzzy clustering algorithm is developed and the results discussed. Consumer energy management applications within the InovGrid pilot project are presented. Computation systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters, allowing the incorporation of consumer actions on their electrical energy management. An energy management system with integration of smart meters for energy consumers in a smart grid is developed.