14 resultados para BINAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1,3-dipolar cycloaddition between azomethine ylides and alkenes is efficiently catalysed by [{(Sa)-Binap-Au(tfa)}2] (Binap=2,2′-bis(diphenylphosphino)-1,1′-binaphthyl; tfa=trifluoroacetyl). Maleimides, 1,2-bis(phenylsulfonyl)ethylene, chalcone and nitrostyrene were suitable dipolarophiles even when using sterically hindered 1,3-dipole precursors. The results obtained in these transformations improve the analogous ones obtained in the same reactions catalysed by [Binap–Ag(tfa)]. In addition, computational studies have also been carried out to demonstrate both the high enantioselectivity exhibited by the chiral gold(I) complex, and the non-linear effect observed in this transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binap-AgSbF6 catalyzed 1,3-dipolar cycloadditions between azomethine ylides and electrophilic alkenes are described and compared with analogous transformations mediated by other Binap-silver(I) salt complexes. Maleimides and 1,2-bis(phenylsulfonyl)ethylene are suitable dipolarophiles for obtaining very good enantioselectivities, even better values are generated by a multicomponent version. There are some very interesting applications of the disulfonylated cycloadducts in the total synthesis of cis-2,5-disubstituted pyrrolidines, precursors of natural products, or valuable intermediates in the synthesis of antiviral compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(Sa)-Binap·AuTFA]2. The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enantioselective binap–silver catalyzed multicomponent 1,3-dipolar cycloaddition using ethyl glyoxylate, phenylalanine ethyl ester, and maleimides is described. The employment of basic silver carbonate allows the reaction to take place in the absence of an extra base giving high yields and ee. In addition, low-level calculations regarding the importance of the benzyl substituent at the α-position of the amino ester justify the expected absolute configuration of the final cycloadducts and the observed high enantiodiscrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of chiral centres within biologically active compounds has been a perplexing yet motivational force in chemistry. This work presents the attempted formation of a concurrent or sequential tandem catalyzed methodology of enantioselective nucleophilic addition and electrophilic cyclization. The 2'- arylalkynyl- aldehyde, ketone, and imine substrates used within were adeptly chosen with a dually activated structure; 1) for nucleophilic addition to the electrophilic substituents; and 2) for carbophilic activation of the alkyne substituent to undergo cyclization. To accomplish the nucleophilic addition, two distinct allylation methodologies were pursued: (/?)-BINOL catalyzed-allylboration and (5)- BINAP-AgF catalyzed-allylsilylation. BINAP catalyzed enantioselective allylation of 2'-arylalkynyl-aldehydes, to form chiral homoallylic alcohols, was successful. Homoallylic alcohols were isolated with high enantio-purity (>80%), which then underwent sequential cyclization to form chiral allylic phthalans, in moderate yields. An application of this methodology towards the construction of biologically active compounds was included with the partial synthesis of the natural product and H. pylori inhibitor, (+)-Spirolaxine methyl ether.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Tesis describe una serie de complejos de Rutenio conteniendo ligandos quirales y su aplicación en catálisis asimétrica. Por un lado se describe el complejo [RuCl(bpea)((S)-BINAP)](BF4), donde (S)-BINAP es una difosfina quiral y bpea un ligando N-tridentado. Su aplicación en catálisis de hidrogenación asimétrica de sustratos olefínicos y carbonílicos, tanto en fase homogénea como heterogénea (tras inmovilización sobre soportes alumino-fosfato), ha mostrado excelentes resultados de conversión y excesos enantioméricos. Aparte, se ha desarrollado una familia de complejos con fórmula [Ru(T)(B)X], donde T representa un ligando tri-N-dentado, B una di-oxazolina quiral y X es Cl o H2O. Se ha estudiado la actividad catalítica de los aquocomplejos con T = tpm en epoxidaciones, determinándose la influencia de los sustituyentes en B sobre el rendimiento y la quimioselectividad, favorecidos por interacciones de tipo π-stacking. El uso de otros ligandos tridentados ha llevado a su rotura, habiéndose caracterizado sin embargo los correspondientes complejos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactivity of the mer-[RuCl3(dppb)H2O] complex (1) with di-hydrogen shows that the products formed depend on the conditions of the reaction, i.e., solvents and presence or absence of a base. The new mixed-valence complexes [(diop)ClRu-(h-Cl)(3)-RuCl(dppb)] (3), [(binap)CIRu-(p-Cl)(3)-RuCl(dppb)] (4), [(PPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (6), [(dppn)ClRu-(mu-Cl)(3)-RuCl(dppb)] (7), [(P-ptol(3))(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (8), [(SbPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (9), [(eta(6)-C6H6)Ru-(mu-Cl)(3)-RuCl(dppb)] (11) and the known mixed-valence [(dppb)CIRu-(mu-Cl)(3)-RuCl(dppb)] (5) and [(diop)ClRu-(mu-Cl)(3)-RuCl(diop)] (10) were synthesized from complexes (1) or (2) using a methodology developed in our research group. The known complexes [(dppb)ClRu-(mu-Cl)(2)-RuCl(dppb)] (12), [(dppb)(CO)Ru-(mu-Cl)(3)-RuCl(dppb)] (13) and [H2NEt2][(dppb)ClRu-(mu-Cl)(3)-RuCl(dppb)] (14) were synthesized by changing the reaction conditions between mer-[RuCl3(dppb)H2O] (1) and dihydrogen. The crystal structures of (5) and (11) were determined by single-crystal X-ray diffraction. Some of the complexes described here are effective pre-catalysts for the hydrogenation of imines. Preliminary results on the homogeneous hydrogenation of the imines Ph-CH2-N=CH-Ph and Ph-N=CH-Ph are presented. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of the present work was to synthesize and to characterize new classes of N-containing polymers via palladium-catalyzed aryl amination. This work was inspired by a desire to combine the properties of high-performance polymers such as PEKs with those of N-containing conductive polymers such as polyaniline (PANI), poly(aromatic amides) (PAAs), and the ready synthesis of N-containing simple aromatic compound by the Buchwald-Hartwig reaction. Careful investigation of a model reaction was carried out to provide insights into the formation of side products which will have a negative effect upon the molecular weight or upon the materials properties of the desired polymers in the polycondensation reaction. In this thesis, five new different polymer classes namely, poly(imino ketone)s (PIKs), poly(imino acridine)s (PIAcs), poly(imino azobenzene)s (PIAzos), poly(imino fluorenone)s (PIFOs), and poly(imino carbazole)s (PICs) were synthesized and fully characterized by means of 1H-NMR, elemental analysis, UV, FT-IR, X-ray, GPC, TGA, DSC, DMA, and dielectric spectroscopy. To optimize the polycondensation process, the influence of the concentration, temperature, ligands and the reactivity of the halogen containing monomers were investigated. A temperature of 100-165 °C and a concentration of 30-36 % were found to be optimal for the palladium-catalyzed polycondensation to produce polymer with high molecular weight (Mn = 85 900, Mw = 474 500, DP = 126). Four different ligands were used successfully in the Pd-catalyzed process, of which the Pd/BINAP system was found to be the most effective catalyst, producing the highest yield and highest molecular weight polymers. It was found that the reactivity decreases strongly with increasing electronegativity of the halogen atoms, for example better yields, and higher molecular weights were obtained by using dibromo compounds than dichloro compounds while difluoro compounds were totally unreactive. Polymer analogous transformations, such as the protonation reaction of the ring nitrogens in PIAcs, or of the azobenzene groups of PIAzos, the photo and thermal cis-trans-isomerization of PIAzos, and of poly(imino alcohol)s were also studied. The values of the dielectric constants of PIKs at 1 MHz were in the range 2.71-3.08. These low values of the dielectric constant are lower than that of "H Film", a polyimide Kapton film which is one of the most preferred high-performance dielectrics in microelectronic applications having a dielectric constant of 3.5. In addition to the low values of the dielectric constants, PIKs have lower and glass transition temperatures (Tgs) than arimides such as Kapton which may make them more easily processable. Cyclic voltammetry showed that PICs exhibited low oxidation and reduction potentials and their values were shifted to low values with increasing degree of polymerization i.e. with increasing of the carbazole content in backbone of PICs (PIC-7, 0.44, 0.33 V, DP= 37, PIC-5, 0.63, 0.46, DP= 16, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carboline sind eine große Gruppe von natürlich vorkommenden Alkaloiden, die eine tricyclische Pyrido[b]indol-Ringstruktur gemeinsam habe. Das breite Spektrum biologischer Eigenschaften dieser Verbindungsklasse macht sie zu einem interessanten Syntheseziel. Die größte Herausforderung in der Darstellung von Carbolinen ist die regioselektive Funktionalisierung an den aromatischen Positionen. Im Rahmen dieser Arbeit konnte ein A ABC-Zugang zu beta- und gamma-Carbolinen entwickelt werden, dessen Schlüsselschritt der Aufbau des Carbolin-Gerüsts durch eine übergangsmetall-katalysierte [2+2+2]-Cycloaddition von 1,6-Diin-Einheiten und Nitrilen ist. Die benötigten Diin-Einheiten wurden in wenigen Schritten ausgehend von 2-Iodanilin durch eine Reaktionssequenz aus Sonogashira-Reaktion mit terminalen Alkinen, N-Tosylierung und N-Ethinylierung mit Alkinyliodonium-Salzen synthetisiert. Eine flexible Funktionalisierung dieser Diine wurde durch palladium-katalysierte sp2-sp-Kreuzkupplungsreaktionen der terminalen Alkine mit Aryl- und Alkenylhalogeniden erreicht. Cp*RuCl- und [Rh(cod)2]BF4/BINAP-katalysierte [2+2+2]-Cycloadditionen der 1,6-Diine mit elektronenarmen Nitrilen lieferte in hoher Regioselektivität beta- oder gamma-Carboline. In Übereinstimmung mit literaturbekannten übergangsmetall-katalysierten [2+2+2]-Cycloadditionen konnte dabei eine starke Abhängigkeit von sterischen und elektronischen Faktoren beobachtet werden. Um das Potential dieser Methode zu demonstrieren, wurde der Einsatz der [2+2+2]-Cycloaddition in Totalsynthese von Lavendamycin untersucht. Lavendamycin, ein aus Bakterien stammendes Chinochinolin-substituiertes beta-Carbolin mit antimikrobieller und signifikanter Antitumor-Aktivität, wurde ausgehend von Hydrochinon und 2-Iodanilin in 14 Schritten und in einer Gesamtausbeute von 29% dargestellt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycine-derived azlactones react with maleimides using (S)- or (R)-dimeric BinapAuTFA complexes affording the corresponding cycloadducts in good yields and high enantioselections (up to 99% ee). The intermediate carboxylic acids are treated with trimethylsilyldiazomethane and isolated as Δ¹-pyrroline methyl esters. These cycloadducts are transformed into exo-proline derivatives by reduction with NaBH3CN in acidic media. On the other hand, N-benzoylalanine-derived oxazolone reacts with tert-butyl acrylate providing the cycloadduct with the ester group at the 3-position with a trans-relative configuration with respect to the methyl ester group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lithiation, of the secondary chloride 2, catalyzed by binaphthyl derivatives, i.e. BINAM 4, BINOL 5, BINAP 6, H8-BINAP 7, Tol-BINAP 8, 2,2’-bis(pyrrolidin-1-yl)-1,1’-binaphthalene 9, and 2,2’-dimethyl-1,1’-binaphthalene 11, in the presence of different ketones has been studied, yielding the corresponding alcohol derivatives 3 and 12-16 in moderate to good yields. Binaphthyl derivative 11 has revealed to be very active as catalyst in the lithiation process at room temperature, and has allowed the preparation of the alcohol derivatives with enantioselectivities up to 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this account, we describe the experience of our research group in the implementation of chiral coinage metal complexes into the efficient enantioselective 1,3-DC of azomethine ylides derived from α-amino acids and azlactones with different dipolarophiles. The corresponding chiral metallodipoles were generated in situ and next focused on the synthesis of highly substituted prolines. For this purpose, privileged ligands such as phosphoramidites and binap with silver(I), gold(I) and copper(II) salts are described. Depending from the ligand and mainly from the metal salt it can be possible to control the facial endo/exo-diasteroselectivity and the enantioselectivity of these types of processes. The synthetic processes are also supported by DFT calculations in order to elucidate the most plausible mechanism and the stereochemical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gold(I)-catalyzed chemoselective dearomatization of β-naphthols is reported through a straightforward approach via [3,3]-sigmatropic rearrangement /allene-cyclyzation cascade processes. Easily accessed naphthyl-propargyl ethers and derivatives in this work are employed as starting materials. Delightfully, an array of deoramatized dyhydrofuryl -naphthalen-2(1H)-ones featured densely functional groups are obtained in high yields (up to 98%) in 10 min reaction time under extremely mild reaction conditions like reagent grade solvent and exposure to air. The potential of accessing to high enantioselectivety on the dearomatized dyhydrofuryl- naphthalen-2(1H)-ones is also approved by the good ee (65%) relying on (R)-xylyl- BINAP(AuCl)2. In addition, complete theoretical elucidation of the reaction pathway is also proposed which addresses a rationale for essential motivation such as regio- and chemoselectivity. Moreover, an efficient gold catalyzed intermolecular dearomatization of substituted β-naphthols with allenamides is presented here. PPh3AuTFA (5 mol %) approves the efficient dearomatively allylation protocol under mild conditions and exhibits high tolerance on substrates scope (24 examples) in good to excellent yield accompanied with high regioselectivity and stereoselectivity. Moreover, the synergistic catalytic system also highlight the synergistic function between the [PPh3Au]+ (π-acid) and TFA− (Lewis base). At last, a new chiral BINOL phosphoric acid silver salt is successfully synthesized and used as the chiral counter anion, which strongly promotes the enantioselectivity (up to 92%). At last but not least, crucially, SmI2 induced enantioselective formal synthesis of strychnine, a complex alkaloid and a classical target used to benchmark new synthetic methods is developed. Enantioselective dearomatising radical cyclisation on to the indole unit and further ET will then give organosamarium that is quenched diastereoselectively by the ester to deliver Strychnine in 7 steps.