996 resultados para BIFIDOBACTERIUM BREVE CLB


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Antibiotic-associated diarrhea (AAD) is an important side effect of this specific class of drugs. The objective of this study was to investigate the effect of the use of probiotics in the treatment of AAD. METHODS: A group of hospitalized patients, who contracted diarrhea during or after 7 days of suspension of antimicrobial medication, was blindly randomized to receive a standardized diet associated with the use of the probiotics (Lactobacillus casei and Bifidobacterium breve) or its corresponding placebo, three times a day. RESULTS: Seventy patients were studied. For the experimental (n=35) and control (n=35) groups, respectively, the average time of treatment was 5.06±2.18 and 5.49±3.17 days (p=0.95), and the average duration of diarrhea, among those who were healed, was 4.87±2.13 and 4.52±2.55 days (p=0.36). Four (11.4%) patients who received probiotics and ten (28.6%) who received the placebo were not cured (p=0.13), and relapse rates were similar between both groups. Seven patients from each group, in addition to diarrhea, presented cases of bloating and/or abdominal cramps and/or vomiting (p=1.00). CONCLUSIONS: In this light, it is concluded that L. casei associated with B. breve, in the administered dosage and frequency, has no effect on the antibiotic-associated diarrhea. Similar studies need to be conducted with higher doses of these or other probiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bifidobacteria constitute a specific group of commensal bacteria, typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support appreciable growth. Using a combination of transcriptomic and functional genomic approaches, a gene cluster, designated ats2, was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived carbohydrates which allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of this species' ability to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant and adult gut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra-and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results: Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U. mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2: 1 or 4: 1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. Conclusion: Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bifidobacteria in the infant faecal microbiota have been the focus of much interest, especially during the exclusive milk-feeding period and in relation to the fortification of infant formulae to better mimic breast milk. However, longitudinal studies examining the diversity and dynamics of the Bifidobacterium population of infants are lacking, particularly in relation to the effects of weaning. Using a polyphasic strategy, the Bifidobacterium populations of breast- and formula-fed infants were examined during the first 18 months of life. Bifidobacterium-specific denaturing gradient gel electrophoresis demonstrated that breast-fed infants harboured greater diversity than formula-fed infants and the diversity of the infants' Bifidobacterium populations increased with weaning. Twenty-seven distinctive banding profiles were observed from ∼1100 infant isolates using ribosomal intergenic spacer analysis, 14 biotypes of which were confirmed to be members of the genus Bifidobacterium. Two profiles (H, Bifidobacterium longum subsp. infantis; and I, Bifidobacterium bifidum) were common culturable biotypes, seen in 9/10 infants, while profile E (Bifidobacterium breve) was common among breast-fed infants. Overall, inter- and intra-individual differences were observed in the Bifidobacterium populations of infants between 1 and 18 months of age, although weaning was associated with increased diversity of the infant Bifidobacterium populations. Breast-fed infants generally harboured a more complex Bifidobacterium microbiota than formula-fed infants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bifidobacterium strains of human origin were screened for their ability to grow in milk and produce exopolysaccharides (EPS). Bifidobacterium strains were grown in low-fat UHT milk and were evaluated for their growth, acidification properties, EPS production and ability to increase the viscosity of fermented milk. The strains that grew well in milk were strains of Bifidobacterium breve and Bifidobacterium longum and B. longum subsp. longum. Among the 22 strains, EPS was produced by Bifidobacterium bifidum ALM 35, B. breve NCIMB 8807 (UCC 2003), B. longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 at concentrations ranging from 25 to 140 . The molecular mass and the composition varied considerably, depending on the strain. Analysis of the correlation between the apparent viscosity of the fermented milk and pH indicated that the EPS produced during the acidification of milk possibly contributed to the viscosity of the milk products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We previously described the isolation and characterization of three probiotic strains from the feces of exclusively breast-fed newborn infants: Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036. These strains were shown to adhere to intestinal mucus in vitro, to be sensitive to antibiotics and to resist biliary salts and low pH. In the present study, a multicenter, randomized, double-blind, placebo-controlled trial with 100 healthy volunteers in three Spanish cities was carried out to evaluate the tolerance, safety, gut colonization and immunomodulatory effects of these three probiotics. Volunteers underwent a 15-day washout period, after which they were randomly divided into 5 groups that received daily a placebo, a capsule containing one of the 3 strains or a capsule containing a mixture of two strains for 30 days. The intervention was followed by another 15-day washout period. Patients did not consume fermented milk for the entire duration of the study. Gastrointestinal symptoms, defecation frequency and stool consistency were not altered by probiotic intake. No relevant changes in blood and serum, as well as no adverse events occurred during or after treatment. Probiotic administration slightly modified bacterial populations in the volunteers' feces. Intestinal persistence occurred in volunteers who received L. rhamnosus CNCM I-4036. Administration of B. breve CNCM I-4035 resulted in a significant increase in fecal secretory IgA content. IL-4 and IL-10 increased, whereas IL-12 decreased in the serum of volunteers treated with any of the three strains. These results demonstrate that the consumption of these three bacterial strains was safe and exerted varying degrees of immunomodulatory effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the production of alginate microcapsules, which have been coated with the polysaccharide chitosan, and evaluates some of their properties with the intention of improving the gastrointestinal viability of a probiotic (Bifidobacterium breve) by encapsulation in this system. The microcapsules were dried by a variety of methods, and the most suitable was chosen. The work described in this Article is the first report detailing the effects of drying on the properties of these microcapsules and the viability of the bacteria within relative to wet microcapsules. The pH range over which chitosan and alginate form polyelectrolyte complexes was explored by spectrophotometry, and this extended into swelling studies on the microcapsules over a range of pHs associated with the gastrointestinal tract. It was shown that chitosan stabilizes the alginate microcapsules at pHs above 3, extending the stability of the capsules under these conditions. The effect of chitosan exposure time on the coating thickness was investigated for the first time by confocal laser scanning microscopy, and its penetration into the alginate matrix was shown to be particularly slow. Coating with chitosan was found to increase the survival of B. breve in simulated gastric fluid as well as prolong its release upon exposure to intestinal pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using ‘prebiotics’, which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a ‘synbiotic’. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate–chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6 h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 log CFU/mL cells in acid, an improvement over alginate–chitosan microencapsulation of 1.4 log CFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.