997 resultados para BETA-ADRENOCEPTOR SUBTYPES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The smooth muscle relaxant responses to the mixed beta(3)-, putative beta(4)-adrenoceptor agonist, (-)-CGP 12177 in rat colon are partially resistant to blockade by the beta(3)-adrenoceptor antagonist SR59230A suggesting involvement of beta(3)- and putative beta(4)-adrenoceptors. We now investigated the function of the putative beta(4)-adrenoceptor and other beta-adrenoceptor subtypes in the colon, oesophagus and ureter of wild-type (WT) and beta(3)-adrenoceptor knockout (beta(3)KO) mice. 2 (-)-Noradrenaline and (-)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through beta(1)-and beta(3)-adrenoceptors to a similar extent and to a minor extent through beta(2)-adrenoceptors. In colon from beta(3)KO mice, (-)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through beta(1)-adrenoceptors. (-)-CGP 12177 relaxed colon from beta(3)KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (-)-noradrenaline and increase for (-)-CGP 12177 indicate compensatory increases in beta(1)- and putative beta(4)-adrenoceptor function in beta(3)KO mice. 3 In oesophagi precontracted with 1 mu M carbachol, (-)-noradrenaline caused relaxation mainly through beta(1)-and beta(3)-adrenoceptors. (-)-CGP 12177 (2 mu M) relaxed oesophagi from WT by 61.4+/-5.1% and beta(3)KO by 67.3+/-10.1% of the (-)-isoprenaline-evoked relaxation, consistent with mediation through putative beta(4)-adrenoceptors. 4 In ureter, (-)-CGP 12177 (2 mu M) reduced pacemaker activity by 31.1+/-2.3% in WT and 31.3+/-7.5% in beta(3)KO, consistent with mediation through putative beta(4)-adrenoceptors. 5 Relaxation of mouse colon and oesophagus by catecholamines are mediated through beta(1)- and beta(3)- adrenoceptors in WT. The putative beta(4)-adrenoceptor, which presumably is an atypical state of the beta(1)-adrenoceptor, mediates the effects of(-)-CGP 12177 in colon, oesophagus and ureter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was performed to characterize the beta-adrenoceptor population in rabbit isolated corpus cavernosum (RbCC) by using nonselective and selective beta-adrenoceptor agonists and antagonists in functional assays. Metaproterenol, ritodrine, fenoterol, and 8-hydroxy-5-[(1R)-1-hydroxy-2-[N-[(1R)-2-(rho-methoxy-phenyl)1-methylethyl] amino] ethyl] carbostyril (TA 2005) (3-100 nmol each) dose dependently relaxed the RbCC preparations. These relaxations were markedly reduced by N-omega-nitro-L-arginine methyl ester (L-NAME; 10 muM) and 1H-[1,2,4]-oxadiazolo-[4,3,-a]quinoxalin-1-one (ODQ) (10 muM), whereas the adenylyl cyclase inhibitor SQ 22,536 [9-(2-tetrahydrofuryl)adenine] (10 muM) had no effect. In contrast, neither L-NAME nor ODQ affected the isoproterenol-induced RbCC relaxations, but SQ 22,536 abolished this response. Sildenafil (1 muM) significantly potentiated the relaxations induced by beta(2)-agonists without affecting the isoproterenol-evoked relaxations. Rolipram (10 muM) enhanced the relaxations elicited by isoproterenol but had no effect on those induced by the selective beta(2) agonists. Propranolol and (+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanolhydrochloride (ICI 118,551) determined a rightward shift in the concentration-response curves to isoproterenol in a noncompetitive manner with a reduction of maximum response at the highest antagonist concentration, with the slope values significantly different from unity. Propranolol and ICI 118,551 had no effect on the relaxations elicited by fenoterol, TA 2005, metaproterenol, and ritodrine. Atenolol and 1-[2-((3-carbamoyl-4-hydroxy)phenoxy) ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)-phenoxy]2-propanol methanesulfonate (CGP 20712A) (0.1-10 muM) failed to affect the relaxations induced by all tested beta-adrenoceptor agonists. Our study revealed the existence of two atypical beta-adrenoceptors in the rabbit erectile tissue. Isoproterenol relaxes the rabbit cavernosal tissue by activating atypical beta-adrenoceptors coupled to adenylyl cyclase pathway, whereas the selective beta2-adrenoceptor agonists relax the RbCC tissue through another atypical beta-adrenoceptor subtype coupled to nitric oxide release from the sinusoidal endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Adrenoceptor antagonists have revolutionized the management of heart failure in humans. However, fundamental questions remain concerning their use. Currently, there is considerable debate about the role of beta(2)-adrenoceptors in heart failure and whether incremental clinical benefit can be obtained by blockade of beta(2)-adrenoceptors in addition to beta(1)-adrenoceptors. Polymorphic forms of beta(1)- and beta(2)-adrenoceptors exist, which might contribute to the variable clinical outcomes that are observed with P-adrenoceptor antagonists. There is evidence for a low-affinity state of beta(1)-adrenoceptors and ventricular beta(3)-adrenoceptors, and these are discussed in the context of heart failure. Finally, there is seemingly paradoxical evidence that restoration and normalization of the beta-adrenoceptor system is beneficial in animal models of heart failure. We reconcile this view with the current clinical use and proven benefit of beta-adrenoceptor antagonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some blockers of beta(1)- and beta(2)-adrenoceptors cause cardiostimulant effects through an atypical beta-adrenoceptor (putative beta(4)-adrenoceptor) that resembles the beta(3)-adrenoceptor. It is likely but not proven that the putative beta(4)-adrenoceptor is genetically distinct from the beta(3)-adrenoceptor. We therefore investigated whether or not the cardiac atypical beta-adrenoceptor could mediate agonist effects in mice lacking a functional beta(3)-adrenoceptor gene (beta(3)KO). (-)-CGP 12177, a beta(1)- and beta(2)-adrenoceptor blocker that causes agonist effects through both beta(3)-adrenoceptors and cardiac putative beta(4)-adrenoceptors, caused cardiostimulant effects that were not different in atria from wild-type (WT) mice and beta(3)KO mice. The effects of (-)-CGP 12177 were resistant to blockade by (-)-propranolol (200 nM) but were blocked by (-)-bupranolol (1 mu M) with an equilibrium dissociation constant of 15 nM in WT and 17 nM in beta(3)KO. (-)-[H-3]CGP 12177 labeled a similar density of the putative beta(4)-adrenoceptor in ventricular membranes from the hearts of both WT (B-max = 52 fmol/mg protein) and beta(3)KO (B-max = 53 fmol/mg protein) mice. The affinity of (-)-[H-3]CGP 12177 for the cardiac putative beta(4)-adrenoceptor was not different between WT (K-d = 46 nM) and beta(3)KO (K-d = 40 nM). These results provide definitive evidence that the cardiac putative beta(4)-adrenoceptor is distinct from the beta(3)-adrenoceptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Evidence for a 'putative beta(4)-adrenoceptor' originated over 20 years ago when cardiostimulant effects were observed to nonconventional partial agonists, These agonists were originally described as beta(1)- and beta(2)-adrenoceptor antagonists; however, they cause cardiostimulant effects at much higher concentrations than those required to block beta(1)- and beta(2)-adrenoceptors. Cardiostimulant effects of non-conventional partial agonists have been observed in mouse, rat, guinea-pig, cat, ferret and human heart tissues, 2. The receptor is expressed in several heart regions, including the sinoatrial node, atrium and ventricle, 3. The receptor is resistant to blockade by most antagonists that possess high affinity for beta(1)- and beta(2)- adrenoceptors, but is blocked with moderate affinity by (-)-bupranolol and CGP 20712A. 4. The receptor is pharmacologically distinct from the beta(3)-adrenoceptor. Micromolar concentrations of beta(3)-adrenoceptor agonists have no agonist or blocking activity, The receptor is also resistant to blockade by a beta(3)-adrenoceptor-selective antagonist. 5. The receptor mediates increases in cAMP levels and cAMP-dependent protein kinase (PK) A activity in cardiac tissues. Phosphodiesterase inhibition potentiates the positive chronotropic and inotropic effects of non-conventional partial agonists. 6. The receptor mediates hastening of atrial and ventricular relaxation, which is consistent with involvement of a cAMP-dependent pathway. 7. The non-conventional partial agonist (-)-[H-3]-CGP 12177A labels the cardiac putative beta(4)-adrenoceptor, Non-conventional partial agonists compete for binding with affinities that are closely similar to their agonist potencies, Catecholamines compete for binding in a stereoselective manner with a rank order of affinity of (-)-R0363 > (-)-isoprenaline > (-)-noradrenaline greater than or equal to (-)-adrenaline much greater than (-)-isoprenaline, suggesting that catecholamines can interact with the receptor. 8. The putative beta(4)-adrenoceptor appears to be coupled to the G(s)-adenylyl cyclase system, which could serve as a guide to its future cloning, Activation of the receptor may plausibly improve diastolic function but could also mediate arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of the conotoxin p-TIA, a 19-amino acid peptide isolated from the marine snail Conus tulipa, to antagonize contractions induced by noradrenaline through activation of alpha(1A)-adrenoceptors in rat vas deferens, alpha(1B)-adrenoceptors in rat spleen and alpha(ID)-adrenoceptors in rat aorta, and to inhibit the binding of [I-125]HEAT (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) to membranes of human embryonic kidney (HEK) 293 cells expressing each of the recombinant rat alpha(1)-adrenoceptors was investigated. p-TIA (100 nM to 1 muM) antagonized the contractions of vas deferens and aorta in response to noradrenaline without affecting maximal effects and with similar potencies (pA(2)similar to7.2, n=4). This suggests that p-TIA is a competitive antagonist of alpha(1A)- and alpha(1D)-adrenoceptors with no selectivity between these subtypes. Incubation of p-TIA (30 to 300 nM) with rat spleen caused a significant reduction of the maximal response to noradrenaline, suggesting that p-TIA is a non-competitive antagonist at alpha(1B)-adrenoceptors. After receptor inactivation with phenoxybenzamine, the potency of p-TIA in inhibiting contractions was examined with similar occupancies (similar to25%) at each subtype. Its potency (pIC(50)) was 12 times higher in spleen (8.3 +/- 0.1, n=4) than in vas deferens (7.2 +/- 0.1, n=4) or aorta (7.2 0.1, n=4). In radioligand binding assays, p-TIA decreased the number of binding sites (B,,,,,,) in membranes from HEK293 cells expressing the rat alpha(1B)-adrenoceptors without affecting affinity (K-D), In contrast, in HEK293 cells expressing rat alpha(1A)- or alpha(1D)-adrenoceptors, p-TTA decreased the KD without affecting the B-max. It is concluded that p-TIA will be useful for distinguishing the role of particular alpha(1)-adrenoceptor subtypes in native tissues. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In human heart there is now evidence for the involvement of four beta-adrenoceptor populations, three identical to the recombinant beta(1)-, beta(2)- and beta(3)-adrenoceptors, and a fourth as yet uncloned putative beta-adrenoceptor population, which we designate provisionally as the cardiac putative beta(4)-adrenoceptor. This review described novel features of beta-adrenoceptors as modulators of cardiac systolic and diastolic function. We also discuss evidence for modulation by unoccupied beta(1)- and beta(2)-adrenoceptors. Human cardiac and recombinant beta(1)- and beta(2)-adrenoceptors are both mainly coupled to adenylyl cyclase through Gs protein, the latter more tightly than the former. Activation of both human beta(1)- and beta(2)-adrenoceptors not only increases cardiac force during systole but also hastens relaxation through cyclic AMP-dependent phosphorylation of phospholamban and troponin I, thereby facilitating diastolic function. Furthermore, both beta(1) and beta(2)-adrenoceptors can mediate experimental arrhythmias in human cardiac preparations elicited by noradrenaline and adrenaline. Human ventricular beta(3)-adrenoceptors appear to be coupled to a pertussis toxin-sensitive protein (Gi?). beta(3)-Adrenoceptor-selective agonists shorten the action potential and cause cardiodepression, suggesting direct coupling of a Gi protein to a K+ channel. In a variety of species, including man, cardiac putative beta(4)-adrenoceptors mediate cardiostimulant effects of non-conventional partial agonists, i.e. high affinity beta(1)- and beta(2)-adrenoceptor blockers that cause agonist effects at concentrations considerably higher than those that block these receptors. Putative beta(4)-adrenoceptors appear to be coupled positively to a cyclic AMP-dependent cascade and can undergo some desensitisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the responsiveness, affinity constants and beta-adrenoceptor reserves for isoprenaline on the isolated aorta in the maturation of normotensive and hypertensive rats. The effects of a very slowly reversible antagonist, bromoacetylalprenololmenthane (BAAM), on the relaxant responses of the aortae of 5- and 14-week-old Wistar Kyoto normotensive rats (WKY) and spontaneously hypertensive rats (SHRs) to isoprenaline were determined. Five-week-old SHRs are pre-hypertensive and the aortic rings are less responsive to isoprenaline than age-matched WKY (pD(2) values: WKY, 8.40; SHRs, 8.03). Similar relaxant responses to forskolin were obtained on the aortae of 5- and 14-week-old WKY and SHRs. The K-A value for isoprenaline at the aortic beta(2)-adrenoceptors of the 5-week-old WKY was 2.1 x 10(-7) M, and similar values were obtained on the aortae of 5-week-old SHR and 14-week-old WKY and SHRs. In the maturation of the WKY aortae from 5 to 14 weeks, there was a reduction in the maximum response, a major loss of sensitivity and a loss of 2-adrenoceptor reserve for isoprenaline. On 5-week-old SHR aorta, the sensitivity to isoprenaline was 2.5-fold lower, and the beta(2)-adrenoceptor reserve was less than on age-matched WKY. In the development of hypertension on the SHR aorta from 5 to 14 weeks, there was a reduction in the maximum response to isoprenaline. At 14 weeks, the sensitivity and the 2-adrenoceptor reserve to isoprenaline were similar, but the maximum responses were lower on the SHR than WKY. As there are differences in pre-hypertensive SHR and age-matched WKY aortic responses to isoprenaline, it is no longer valid to consider that the loss of responsiveness to isoprenaline in hypertension is solely owing to the hypertension. There are no changes in affinity, but major changes in the sensitivity, maximum responses and aortic beta(2)-adrenoceptor reserves to isoprenaline in the maturation of normotensive and pre-hypertensive aortae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the contribution of each alpha(1)-adrenoceptor (AR) subtype in noradrenaline (NAd)-evoked contraction in the thoracic aortas and mesenteric arteries of mice. Compared with the concentration-response curves (CRCs) for NAd in the thoracic aortas of wild-type (WT) mice, the CRCs of mutant mice showed a significantly lower sensitivity. The pD(2) value in rank order is as follows: WT mice (8.21) > alpha(1B)-adrenoceptor knockout (alpha(1B)-KO) (7.77) > alpha(1D)-AR knockout (alpha(1D)-KO) (6.44) > alpha(1B)- and alpha(1D)-AR double knockout (alpha(1BD)-KO) (5.15). In the mesenteric artery, CRCs for NAd did not differ significantly between either WT (6.52) and alpha(1B)-KO mice (7.12) or alpha(1D)-KO (6.19) and alpha(1BD)-KO (6.29) mice. However, the CRC maximum responses to NAd in alpha(1D)- and alpha(1BD)-KO mice were significantly lower than those in WT and alpha(1B)-KO mice. Except in the thoracic aortas of alpha(1BD)-KO mice, the competitive antagonist prazosin inhibited the contraction response to NAd with high affinity. However, prazosin produced shallow Schild slopes in the vessels of mice lacking the alpha(1D)-AR gene. In the thoracic aorta, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.25 and 8.46, respectively, and in alpha(1B)-KO mice they were 8.49 and 9.13, respectively. In the mesenteric artery, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.34 and 7.47, respectively, and in alpha(1B)-KO mice they were 8.11 and 7.82, respectively. These pharmacological findings were in fairly good agreement with findings from comparison of CRCs, with the exception of the mesenteric arteries of WT and alpha(1B)-KO mice, which showed low affinities to BMY7378. We performed a quantitative analysis of the mRNA expression of each alpha(1)-AR subtype in these vessels in order to examine the correlation between mRNA expression level and the predominance of each alpha(1)-AR subtype in mediating vascular contraction. The rank order of each alpha(1)-AR subtype in terms of its vasoconstrictor role was in fairly good agreement with the level of expression of mRNA of each subtype, that is, alpha(1D)-AR > alpha(1B)-AR > alpha(1A)-AR in the thoracic aorta and alpha(1D)-AR > alpha(1A)-AR > alpha(1B)-AR in the mesenteric artery. No dramatic compensatory change of alpha(1)-AR subtype in mutant mice was observed in pharmacological or quantitative mRNA expression analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this single-blind, placebo-controlled study was to investigate the effects of the new beta-adrenergic compound Ro 40-2148 on resting energy expenditure (REE) at rest and after an oral glucose load in non-diabetic obese women before and after two weeks of treatment. After one week of placebo administration and after an overnight fast and one hour rest, REE and glucose and lipid oxidation rates were measured by indirect calorimetry (hood system) before and for 6 h after a single dose of placebo solution. A 75 g oral glucose tolerance test (OGTT) was performed during this period starting 90 min after the placebo administration. During the following two weeks, using a randomization design, six patients received Ro 40-2148 at a dose of 400 mg diluted in 100 ml water twice a day (i.e. 800 mg per day), while six others continued with the placebo administration. The same tests and measurements were repeated after two weeks, except for the treatment group which received the drug instead of the placebo. The 14-day period of drug administration did not increase REE measured in post-absorptive conditions. Similarly, there was no acute effect on REE of a 400 mg dose of Ro 40-2148. In contrast, glucose-induced thermogenesis was significantly increased after two weeks in the treatment group (means +/- s.e.m.: 3.7 +/- 1.3%, P = 0.047), while no change was observed in the placebo group (-0.8 +/- 0.7%, not significant). Since there was no significant change in the respiratory quotient, the increase in energy expenditure observed in the treatment group was due to stimulation of both lipid and glucose oxidation. The drug induced no variations in heart rate, blood pressure, axillary temperature or in plasma glucose, insulin and free fatty acid levels. In conclusion, this study shows that Ro 40-2148 activates glucose-induced thermogenesis in obese non-diabetic patients.