163 resultados para BELOWGROUND


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe is investigated. The enhancement of biomass production due to the increase in initial plant species diversity and the consequent stimulation of soil microbial biomass and abundance of soil invertebrates are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground-belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into "hybrid approaches" that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process - oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground-belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground-belowground interactions. Improved ecosystem models are necessary toots to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world. (C) 2004 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root herbivores can have a positive or negative effect on the abundance and/or performance of foliar phytophages. In addition, abiotic factors such as drought can either strengthen or weaken this effect, depending on the system under investigation. One explanation for these varying responses lies in differences in the physiological response of host plants to drought and root herbivores. Here, the impacts of root phytophages on a leaf-mining species feeding on annual and perennial plant species (four Sonchus species) were compared. The responses of plants and leaf-miners to dtought and root herbivore treatments were not related to whether the host plant was an annual or perennial. However, where root feeders did affect foliar phytophage performance, this occurred only under a drought treatment, demonstrating the potential for climatic change to alter the outcome of plant-mediated interactions. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazilian Campos grasslands are ecosystems under high frequency of disturbance by grazing and fires. Absence of such disturbances may lead to shrub encroachment and loss of plant diversity. Vegetation regeneration after disturbance in these grasslands occurs mostly by resprouting from belowground structures. We analyzed the importance of bud bank and belowground bud bearing organs in Campos grasslands. We hypothesize that the longer the intervals between disturbances are, the smaller the size of the bud bank is. Additionally, diversity and frequency of belowground organs should also decrease in areas without disturbance for many years. We sampled 20 soil cores from areas under different types of disturbance: grazed, exclusion from disturbance for two, six, 15 and 30 years. Belowground biomass was sorted for different growth forms and types of bud bearing organs. We found a decrease in bud bank size with longer disturbance intervals. Forbs showed the most drastic decrease in bud bank size in the absence of disturbance, which indicates that they are very sensitive to changes in disturbance regimes. Xylopodia (woody gemmiferous belowground organs with hypocotyl-root origin) were typical for areas under influence of recurrent fires. The diversity of belowground bud bearing structures decreased in the absence of disturbance. Longer intervals between disturbance events, resulting in decrease of bud bank size and heterogeneity of belowground organs may lead to the decline and even disappearance of species that relay on resprouting from the bud bank upon disturbance. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological interactions between different species are not fixed, but they may depend, at least to some extent, on the particular genotypes involved as well as on the environmental conditions experienced by previous generations. We used a set of natural genotypes of Arabidopsis thaliana, that previously experienced contrasting nutrient and herbivory conditions, to test for the influences of genetic variation and maternal effects on competitive interactions between Arabidopsis and the weedy annuals Anagallis arvensis and Senecio vulgaris. We used activated carbon to discriminate between resource competition and allelopathy components of plant-plant interactions. There was a clear competitive hierarchy: Senecio > Arabidopsis > Anagallis. Although we found no evidence for allelopathic potential of Arabidopsis, our results indicate that both Anagallis and Senecio exerted negative (direct or indirect) allelopathic effects on Arabidopsis. There were significant differences among Arabidopsis genotypes in their competitive effects on both neighbor species, as well as in their response to competition. Maternal environments significantly influenced not only the growth and fitness of Arabidopsis itself, but also its competitive effect on Anagallis. We found, however, no evidence that maternal environments affected the competitive effect on Senecio or overall competitive response of Arabidopsis. Generally, resource competition played a greater role than allelopathy, and genotype effects were more important than maternal effects. Our study demonstrates that ecological interactions, such as plant competition, are complex and multi-layered, and that, in particular, the influence of genetic variation on interactions with other species should not be overlooked.