884 resultados para BCL-2 PHOSPHORYLATION
Resumo:
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Resumo:
At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the α1 and α2 helices (Δloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Δloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K→R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.
Resumo:
The antiapoptosis potential of Bcl-2 protein is well established, but the mechanism of Bcl-2 action is still poorly understood. Using the phosphatase inhibitor okadaic acid or the chemotherapeutic drug taxol, we found that Bcl-2 was phosphorylated in lymphoid cells. Phospho amino acid analysis revealed that Bcl-2 was phosphorylated on serine. Under similar conditions, okadaic acid or taxol treatment led to the induction of apoptosis in these cells. Thus, phosphorylation of Bcl-2 seems to inhibit its ability to interfere with apoptosis. In addition, phosphorylated Bcl-2 can no longer prevent lipid peroxidation as required to protect cells from apoptosis.
Resumo:
CDK11(p58), a G2/M-specific protein kinase, has been shown to be associated with apoptosis in many cell lines, with largely unknown mechanisms. Our previous study proved that CDK11(p58)-enhanced cycloheximide (CHX)-induced apoptosis in SMMC-7721 hepatocarcinoma cells. Here we report for the first time that ectopic expression of CDK11(p58) down-regulates Bcl-2 expression and its Ser70, Ser87 phosphorylation in CHX-induced apoptosis in SMMC-7721 cells. Overexpression of Bcl-2 counteracts the pro-apoptotic activity of CDK11(p58). Furthermore, we confirm that the kinase activity of CDK11(p58) is essential to the down-regulation of Bcl-2 as well as apoptosis. Taken together, these results demonstrate that CDK11(p58) down-regulates Bcl-2 in pro-apoptosis pathway depending on its kinase activity, which elicits survival signal in hepatocarcinoma cells.
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^
Resumo:
Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^
Resumo:
Expression of the human protooncogene bcl-2 protects neural cells from death induced by many forms of stress, including conditions that greatly elevate intracellular Ca2+. Considering that Bcl-2 is partially localized to mitochondrial membranes and that excessive mitochondrial Ca2+ uptake can impair electron transport and oxidative phosphorylation, the present study tested the hypothesis that mitochondria from Bcl-2-expressing cells have a higher capacity for energy-dependent Ca2+ uptake and a greater resistance to Ca(2+)-induced respiratory injury than mitochondria from cells that do not express this protein. The overexpression of bcl-2 enhanced the mitochondrial Ca2+ uptake capacity using either digitonin-permeabilized GT1-7 neural cells or isolated GT1-7 mitochondria by 1.7 and 3.9 fold, respectively, when glutamate and malate were used as respiratory substrates. This difference was less apparent when respiration was driven by the oxidation of succinate in the presence of the respiratory complex I inhibitor rotenone. Mitochondria from Bcl-2 expressors were also much more resistant to inhibition of NADH-dependent respiration caused by sequestration of large Ca2+ loads. The enhanced ability of mitochondria within Bcl-2-expressing cells to sequester large quantities of Ca2+ without undergoing profound respiratory impairment provides a plausible mechanism by which Bcl-2 inhibits certain forms of delayed cell death, including neuronal death associated with ischemia and excitotoxicity.
Resumo:
Anchorage-dependent cells that are prevented from attaching to an extracellular matrix substrate stop proliferating and may undergo apoptosis. Cell adhesion to a substrate is mediated by the integrin family of cell surface receptors, which are known to elicit intracellular signals upon cell adhesion. We show here that Chinese hamster ovary cells expressing the alpha 5 beta 1 integrin, which is a fibronectin receptor, do not undergo apoptosis upon serum withdrawal when the cells are plated on fibronectin. However, the alpha v beta 1 integrin, which is also a fibronectin receptor and binds fibronectin on the same RGD motif as alpha 5 beta 1, did not prevent apoptosis on fibronectin of the same cells. The cytoplasmic domain of the integrin alpha 5 subunit was required for the alpha 5 beta 1-mediated cell survival on fibronectin. The fibronectin-mediated survival effect appeared to be independent of the level of tyrosine phosphorylation of the focal adhesion kinase, which is induced by integrin-mediated cell attachment. The expression of the Bcl-2 protein, which counteracts apoptosis, was elevated in cells attaching to fibronectin through alpha 5 beta 1; cells attaching through alpha v beta 1 survived only if exogenous Bcl-2 was provided. Thus, alpha 5 beta 1, but not the closely related alpha v beta 1 integrin, appears to suppress apoptotic cell death through the Bcl-2 pathway.
Resumo:
Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.
Resumo:
Introduction: Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo a typical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. However, the mechanism(s) by which these changes occur during the OA development are not completely understood. Materials and Methods: ACCs and subchondral bone osteoblasts (SBOs) were harvested from OA and healthy patients for the cross-talk studies between normal and OA ACCs and SBOs. The involvement of mitogen activated protein kinase (MAPK) signalling pathway during the cell-cell interactions was analysed by zymography, ELISA and western blotting methods. Results: The direct and in-direct co-culture studies showed that OA (ACCs and SBOs) cells induced osteoarthritic changes of normal (ACC and SBOs) cells. This altered cell interaction induced by OA cells significantly aggravated the proteolytic activity, which resulted cartilage degeneration. The altered cell interaction appeared to significantly activate ERK 1/2 phosphorylation and inhibition of MAPK-ERK 1/2 pathway reversed the osteoarthrtitic phenotypic changes. Discussion and Conclusion: Our study has demonstrated that the altered bi-directional communication of SBOs and ACCs are critical for initiation and progression of OA related changes and that this process is mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA related disorders.
Resumo:
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
For the past decade, an attempt has been made by many research groups to define the roles of the growing number of Bcl-2 gene family proteins in the apoptotic process. The Bcl-2 family consists of pro-apoptotic (or cell death) and anti-apoptotic (or cell survival) genes and it is the balance in expression between these gene lineages that may determine the death or survival of a cell. The majority of studies have analysed the role/s of the Bcl-2 genes in cancer development. Equally important is their role in normal tissue development, homeostasis and non-cancer disease states. Bcl-2 is crucial for normal development in the kidney, with a deficiency in Bcl-2 producing such malformation that renal failure and death result. As a corollary, its role in renal disease states in the adult has been sought. Ischaemia is one of the most common causes of both acute and chronic renal failure. The section of the kidney that is most susceptible to ischaemic damage is the outer zone of the outer medulla. Within this zone the proximal tubules are most sensitive and often die by necrosis or desquamate. In the distal nephron, apoptosis is the more common form of cell death. Recent results from our laboratory have indicated that ischaemia-induced acute renal failure is associated with up-regulation of two anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) in the damaged distal tubule and occasional up-regulation of Bax in the proximal tubule. The distal tubule is a known reservoir for several growth factors important to renal growth and repair, such as insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). One of the likely possibilities for the anti-cell death action of the Bcl-2 genes is that the protected distal cells may be able to produce growth factors that have a further reparative or protective role via an autocrine mechanism in the distal segment and a paracrine mechanism in the proximal cells. Both EGF and IGF-1 are also up-regulated in the surviving distal tubules and are detected in the surviving proximal tubules, where these growth factors are not usually synthesized. As a result, we have been using in vitro methods to test: (i) the relative sensitivities of renal distal and proximal epithelial cell populations to injury caused by mechanisms known to act in ischaemia-reperfusion; (ii) whether a Bcl-2 anti-apoptotic mechanism acts in these cells; and (iii) whether an autocrine and/or paracrine growth factor mechanism is initiated. The following review discusses the background to these studies as well as some of our preliminary results.
Resumo:
BCL-2 family proteins are key regulators of the mitochondrial apoptotic machinery, controlling the mitochondrial outer membrane (MOM) permeabilization (MOMP). BCL-2 related Ovarian Killer (BOK) is a poorly understood pro-apoptotic member of this protein family. It has been reported that BOK localizes predominantly (although not exclusively) at membranes of the endoplasmic reticulum and of the Golgi apparatus. However, it is unclear whether BOK also operates at the MOM to promote apoptosis, as other pro-apoptotic BCL-2 family members do. Basing on the fact that the other two BAX-like pro-apoptotic members have been reported to oligomerize in order to induce MOMP, site-directed mutagenesis was used to generate two point mutations that predictably eliminated BOK’s oligomerization capacity. Then, the effect of such mutations on BOK’s membrane activity was examined using fluorescence spectroscopy.