981 resultados para BCI, interfaccia, cervello, computer, EEG, elettroencefalogramma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con Brain-Computer Interface si intende un collegamento diretto tra cervello e macchina, che essa sia un computer o un qualsiasi dispositivo esterno, senza l’utilizzo di muscoli. Grazie a sensori applicati alla cute del cranio i segnali cerebrali del paziente vengono rilevati, elaborati, classificati (per mezzo di un calcolatore) e infine inviati come output a un device esterno. Grazie all'utilizzo delle BCI, persone con gravi disabilità motorie o comunicative (per esempio malati di SLA o persone colpite dalla sindrome del chiavistello) hanno la possibilità di migliorare la propria qualità di vita. L'obiettivo di questa tesi è quello di fornire una panoramica nell'ambito dell'interfaccia cervello-computer, mostrando le tipologie esistenti, cercando di farne un'analisi critica sui pro e i contro di ogni applicazione, ponendo maggior attenzione sull'uso dell’elettroencefalografia come strumento per l’acquisizione dei segnali in ingresso all'interfaccia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un'interfaccia cervello-computer (BCI: Brain-Computer Interface) è un sistema di comunicazione diretto tra il cervello e un dispositivo esterno che non dipende dalle normali vie di output del cervello, costituite da nervi o muscoli periferici. Il segnale generato dall'utente viene acquisito per mezzo di appositi sensori, poi viene processato e classificato estraendone così le informazioni di interesse che verranno poi utilizzate per produrre un output reinviato all'utente come feedback. La tecnologia BCI trova interessanti applicazioni nel campo biomedico dove può essere di grande aiuto a persone soggette da paralisi, ma non sono da escludere altri utilizzi. Questa tesi in particolare si concentra sulle componenti hardware di una interfaccia cervello-computer analizzando i pregi e i difetti delle varie possibilità: in particolar modo sulla scelta dell'apparecchiatura per il rilevamento della attività cerebrale e dei meccanismi con cui gli utilizzatori della BCI possono interagire con l'ambiente circostante (i cosiddetti attuatori). Le scelte saranno effettuate tenendo in considerazione le necessità degli utilizzatori in modo da ridurre i costi e i rischi aumentando il numero di utenti che potranno effettivamente beneficiare dell'uso di una interfaccia cervello-computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un confronto fra metodiche invasive e non invasive per interfacce brain-to-computer (BCI), al corrente stato dell'arte. Un approfondimento sulle applicazioni mediche, in particolare l'uso nelle tecnologie per l'assistenza di pazienti con malattie degenerative del sistema motorio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approccio strumentale allo studio e al trattamento dell'epilessia. Punti chiave: -cervello; -epilessia; -EEG; -trattamenti.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BCI systems require correct classification of signals interpreted from the brain for useful operation. To this end this paper investigates a method proposed in [1] to correctly classify a series of images presented to a group of subjects in [2]. We show that it is possible to use the proposed methods to correctly recognise the original stimuli presented to a subject from analysis of their EEG. Additionally we use a verification set to show that the trained classification method can be applied to a different set of data. We go on to investigate the issue of invariance in EEG signals. That is, the brain representation of similar stimuli is recognisable across different subjects. Finally we consider the usefulness of the methods investigated towards an improved BCI system and discuss how it could potentially lead to great improvements in the ease of use for the end user by offering an alternative, more intuitive control based mode of operation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Movement intention detection is important for development of intuitive movement based Brain Computer Interfaces (BCI). Various complex oscillatory processes are involved in producing voluntary movement intention. In this paper, temporal dynamics of electroencephalography (EEG) associated with movement intention and execution were studied using autocorrelation. It was observed that the trend of decay of autocorrelation of EEG changes before and during the voluntary movement. A novel feature for movement intention detection was developed based on relaxation time of autocorrelation obtained by fitting exponential decay curve to the autocorrelation. This new single trial feature was used to classify voluntary finger tapping trials from resting state trials with peak accuracy of 76.7%. The performance of autocorrelation analysis was compared with Motor-Related Cortical Potentials (MRCP).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Nel presente lavoro di tesi è stato sviluppato e testato un sistema BCI EEG-based che sfrutta la modulazione dei ritmi sensorimotori tramite immaginazione motoria della mano destra e della mano sinistra. Per migliorare la separabilità dei due stati mentali, in questo lavoro di tesi si è sfruttato l'algoritmo CSP (Common Spatial Pattern), in combinazione ad un classificatore lineare SVM. I due stati mentali richiesti sono stati impiegati per controllare il movimento (rotazione) di un modello di arto superiore a 1 grado di libertà, simulato sullo schermo. Il cuore del lavoro di tesi è consistito nello sviluppo del software del sistema BCI (basato su piattaforma LabVIEW 2011), descritto nella tesi. L'intero sistema è stato poi anche testato su 4 soggetti, per 6 sessioni di addestramento.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Una Brain Computer Interface (BCI) è un dispositivo che permette la misura e l’utilizzo di segnali cerebrali al fine di comandare software e/o periferiche di vario tipo, da semplici videogiochi a complesse protesi robotizzate. Tra i segnali attualmente più utilizzati vi sono i Potenziali Evocati Visivi Steady State (SSVEP), variazioni ritmiche di potenziale elettrico registrabili sulla corteccia visiva primaria con un elettroencefalogramma (EEG) non invasivo; essi sono evocabili attraverso una stimolazione luminosa periodica, e sono caratterizzati da una frequenza di oscillazione pari a quella di stimolazione. Avendo un rapporto segnale rumore (SNR) particolarmente favorevole ed una caratteristica facilmente studiabile, gli SSVEP sono alla base delle più veloci ed immediate BCI attualmente disponibili. All’utente vengono proposte una serie di scelte ciascuna associata ad una stimolazione visiva a diversa frequenza, fra le quali la selezionata si ripresenterà nelle caratteristiche del suo tracciato EEG estratto in tempo reale. L’obiettivo della tesi svolta è stato realizzare un sistema integrato, sviluppato in LabView che implementasse il paradigma BCI SSVEP-based appena descritto, consentendo di: 1. Configurare la generazione di due stimoli luminosi attraverso l’utilizzo di LED esterni; 2. Sincronizzare l’acquisizione del segnale EEG con tale stimolazione; 3. Estrarre features (attributi caratteristici di ciascuna classe) dal suddetto segnale ed utilizzarle per addestrare un classificatore SVM; 4. Utilizzare il classificatore per realizzare un’interfaccia BCI realtime con feedback per l’utente. Il sistema è stato progettato con alcune delle tecniche più avanzate per l’elaborazione spaziale e temporale del segnale ed il suo funzionamento è stato testato su 4 soggetti sani e comparato alle più moderne BCI SSVEP-based confrontabili rinvenute in letteratura.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Companies such as NeuroSky and Emotiv Systems are selling non-medical EEG devices for human computer interaction. These devices are significantly more affordable than their medical counterparts, and are mainly used to measure levels of engagement, focus, relaxation and stress. This information is sought after for marketing research and games. However, these EEG devices have the potential to enable users to interact with their surrounding environment using thoughts only, without activating any muscles. In this paper, we present preliminary results that demonstrate that despite reduced voltage and time sensitivity compared to medical-grade EEG systems, the quality of the signals of the Emotiv EPOC neuroheadset is sufficiently good in allowing discrimina tion between imaging events. We collected streams of EEG raw data and trained different types of classifiers to discriminate between three states (rest and two imaging events). We achieved a generalisation error of less than 2% for two types of non-linear classifiers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.