931 resultados para BCH CODES
Resumo:
Bose-C-Hocquenghem (BCH) atdes with symbols from an arbitrary fhite integer ring are derived in terms of their generator polynomials. The derivation is based on the factohation of x to the power (n) - 1 over the unit ring of an appropriate extension of the fiite integer ring. lke eomtruetion is thus shown to be similar to that for BCH codes over fink flelda.
Resumo:
Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of x s - 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore, we address the construction of BCH codes over Zm under Lee metric.
Resumo:
BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.
Resumo:
The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.
Resumo:
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.
Resumo:
The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around (Formula presented.). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of (Formula presented.), codes selected using our method result in BERs around 3(Formula presented.) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.
Resumo:
Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.
Resumo:
Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.
Resumo:
We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbaud DQPSK systems. Performance of BCH codes are investigated in terms of required overhead. © 2014 OSA.
Resumo:
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.
Resumo:
This study establishes that for a given binary BCH code C0 n of length n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a family of binary cyclic codes {Cm 2m−1(n+1)n}m≥1 such that for each m ≥ 1, the binary cyclic code Cm 2m−1(n+1)n has length 2m−1(n + 1)n and is generated by a generalized polynomial g(x 1 2m ) ∈ F2[x, 1 2m Z≥0] of degree 2mr. Furthermore, C0 n is embedded in Cm 2m−1(n+1)n and Cm 2m−1(n+1)n is embedded in Cm+1 2m(n+1)n for each m ≥ 1. By a newly proposed algorithm, codewords of the binary BCH code C0 n can be transmitted with high code rate and decoded by the decoder of any member of the family {Cm 2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)