988 resultados para BAYESIAN STATISTICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise of evidence-based medicine as well as important progress in statistical methods and computational power have led to a second birth of the >200-year-old Bayesian framework. The use of Bayesian techniques, in particular in the design and interpretation of clinical trials, offers several substantial advantages over the classical statistical approach. First, in contrast to classical statistics, Bayesian analysis allows a direct statement regarding the probability that a treatment was beneficial. Second, Bayesian statistics allow the researcher to incorporate any prior information in the analysis of the experimental results. Third, Bayesian methods can efficiently handle complex statistical models, which are suited for advanced clinical trial designs. Finally, Bayesian statistics encourage a thorough consideration and presentation of the assumptions underlying an analysis, which enables the reader to fully appraise the authors' conclusions. Both Bayesian and classical statistics have their respective strengths and limitations and should be viewed as being complementary to each other; we do not attempt to make a head-to-head comparison, as this is beyond the scope of the present review. Rather, the objective of the present article is to provide a nonmathematical, reader-friendly overview of the current practice of Bayesian statistics coupled with numerous intuitive examples from the field of oncology. It is hoped that this educational review will be a useful resource to the oncologist and result in a better understanding of the scope, strengths, and limitations of the Bayesian approach.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of LISA Path finder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phase-type distributions represent the time to absorption for a finite state Markov chain in continuous time, generalising the exponential distribution and providing a flexible and useful modelling tool. We present a new reversible jump Markov chain Monte Carlo scheme for performing a fully Bayesian analysis of the popular Coxian subclass of phase-type models; the convenient Coxian representation involves fewer parameters than a more general phase-type model. The key novelty of our approach is that we model covariate dependence in the mean whilst using the Coxian phase-type model as a very general residual distribution. Such incorporation of covariates into the model has not previously been attempted in the Bayesian literature. A further novelty is that we also propose a reversible jump scheme for investigating structural changes to the model brought about by the introduction of Erlang phases. Our approach addresses more questions of inference than previous Bayesian treatments of this model and is automatic in nature. We analyse an example dataset comprising lengths of hospital stays of a sample of patients collected from two Australian hospitals to produce a model for a patient's expected length of stay which incorporates the effects of several covariates. This leads to interesting conclusions about what contributes to length of hospital stay with implications for hospital planning. We compare our results with an alternative classical analysis of these data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Toxic blooms of Lyngbya majuscula occur in coastal areas worldwide and have major ecological, health and economic consequences. The exact causes and combinations of factors which lead to these blooms are not clearly understood. Lyngbya experts and stakeholders are a particularly diverse group, including ecologists, scientists, state and local government representatives, community organisations, catchment industry groups and local fishermen. An integrated Bayesian Network approach was developed to better understand and model this complex environmental problem, identify knowledge gaps, prioritise future research and evaluate management options.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: •Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. •Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. •Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.