999 resultados para BASOLATERAL COMPLEX
Resumo:
Evidence from appetitive Pavlovian and instrumental conditioning studies suggest that the amygdala is involved in modulation of responses correlated with motivational states, and therefore, to the modulation of processes probably underlying reinforcement omission effects. The present study aimed to clarify whether or not the mechanisms related to reinforcement omission effects of different magnitudes depend on basolateral complex and central nucleus of amygdala. Rats were trained on a fixed-interval 12 s with limited hold 6 s signaled schedule in which correct responses were always followed by one of two reinforcement magnitudes. Bilateral lesions of the basolateral complex and central nucleus were made after acquisition of stable performance. After postoperative recovery, the training was changed from 100% to 50% reinforcement schedules. The results showed that lesions of the basolateral complex and central nucleus did not eliminate or reduce, but interfere with reinforcement omission effects. The response from rats of both the basolateral complex and central nucleus lesioned group was higher relative to that of the rats of their respective sham-lesioned groups after reinforcement omission. Thus, the lesioned rats were more sensitive to the omission effect. Moreover, the basolateral complex lesions prevented the magnitude effect on reinforcement omission effects. Basolateral complex lesioned rats showed no differential performance following omission of larger and smaller reinforcement magnitude. Thus, the basolateral complex is involved in incentive processes relative to omission of different reinforcement magnitudes. Therefore, it is possible that reinforcement omission effects are modulated by brain circuitry which involves amygdala. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The reinforcement omission effect (ROE) has been attributed to both motivational and attentional consequences of surprising reinforcement omission. Recent evidence suggests that the basolateral complex of the amygdala is involved in motivational components related to reinforcement value, whereas the central nucleus of the amygdala is involved in the processing of the attentional consequences of surprise. This study was designed to verify whether the mechanisms involved in the ROE depend on the integrity of either the basolateral amygdala complex or central nucleus of the amygdala. The ROE was evaluated in rats with lesions of either the central nucleus or basolateral complex of the amygdala and trained on a fixed-interval schedule procedure (Experiment 1) and fixed-interval with limited hold signaled schedule procedure (Experiment 2). The results of Experiment 1 showed that sham-operated rats and rats with lesions of either the central nucleus or basolateral area displayed the ROE. In contrast, in Experiment 2, subjects with lesions of the central nucleus or basolateral complex of the amygdala exhibited a smaller ROE compared with sham-operated subjects. Thus, the effects of selective lesions of amygdala subregions on the ROE in rats depended on the training procedure. Furthermore, the absence of differences between the lesioned groups in either experiment did not allow the dissociation of attentional or motivational components of the ROE with functions of specific areas of the amygdala. Thus, results did not show a functional double-dissociation between the central nucleus and basolateral area in the ROE.
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Resumo:
The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We studied the nicotine stimulation of the amygdaloid complex (AMG) on sodium and water intake in satiated and water-deprived rats. Nicotine produced no change in sodium or water intake in satiated animals when injected directly into the AMG. In water-deprived animals, nicotine injected into the AMG (basolateral nuclei) only blocked sodium chloride intake. We have previously demontrated that carbachol inhibits water and sodium intake in both satiated and water-deprived animals injected into the AMG. Injection of hexamethonium into the AMG totally blocked water intake in satiated and water-deprived animals. Hexamethonium injected into the AMG prior to nicotine produced no change in sodium intake. Thus, the present data suggest that sodium and water intake are mediated by a specific population of cholinoceptive neurons in the amygdaloid complex.
Resumo:
The effect of noradrenaline, isoproterenol, phentolamine and propranolol, injected into the basolateral nuclei of the amygdala on water intake, was investigated in male Holtzman rats. The injection of noradrenaline (40 nmol) into the amygdaloid complex (AC) of satiated rats produced no change in water intake (0.05 ± 0.03 ml/1 hour). The injection of isoproterenol (40 nmol) produced an increase in water intake in sedated rats (1.93 ± 0.23 ml/1 hour). Noradrenaline injected into the AC produced a decrease in water intake in deprived rats (0.40 ± 0.19 ml/1 hour). The injection of isoproterenol into the AC of deprived rats produced no change in water intake in comparison with control (11.65 ± 1.02 and 10.92 ± 0.88 ml/1 hour, respectively). When compared with control values, phentolamine injected prior to noradrenaline blocked the inhibitory effect of noradrenaline on water intake in deprived rats (10.40 ± 1.31 ml/1 hour). Propranolol blocked the effect of isoproterenol in satiated rats (0.85 ± 0.49 ml/1 hour) and also blocked the water intake induced by deprivation (0.53 ± 0.38 ml/1 hour). In satiated and deprived animals the injection of phentolamine before hexamethonium blocked the inhibitory effect of hexamethonium on water intake. In satiated animals, when hexamethonium was injected alone, water intake was 0.39 ± 0.25 ml/1 hour and when hexamethonium was injected with phentolamine, water intake was 1.04 ± 0.3 ml/1 hour. In deprived animals, hexamethonium alone blocked water intake (0.40 ± 0.17 ml/1 hour) and when injected with phentolamine it elicited an intake of 9.7 ± 1.8 ml/1 hour. these results clearly demonstrate the participation of catecholaminergic receptors of the AC in the regulation of water intake.
Resumo:
Sodium chloride intake was studied in rats submitted to different neurosurgical procedures. Intake decreased in animals submitted to bilateral destruction of the basolateral amygdaloid complex, and increased after the same animals were submitted to destruction of the anterior lateral hypothalamus, a procedure which is known to cause increased intake in intact rats. In the reverse experiment, where the anterior lateral hypothalamus was destroyed before the basolateral amygdaloid complex, the effect of increased sodium chloride intake induced by destruction of the hypothalamus overcame the decreased expected upon destruction of the amygdaloid complex. These results permit us to conclude that the hypothalamic areas which inhibit sodium chloride intake predominate over the stimulating areas of the amygdaloid complex in the control of sodium chloride intake. © 1981 ANKHO International Inc.
Resumo:
Evidence that lesions of the basolateral amygdala complex (BLC) impair memory for fear conditioning in rats, measured by lack of “freezing” behavior in the presence of cues previously paired with footshocks, has suggested that the BLC may be a critical locus for the memory of fear conditioning. However, evidence that BLC lesions may impair unlearned as well as conditioned freezing makes it difficult to interpret the findings of studies assessing conditioned fear with freezing. The present study investigated whether such lesions prevent the expression of several measures of memory for contextual fear conditioning in addition to freezing. On day 1, rats with sham lesions or BLC lesions explored a Y maze. The BLC-lesioned rats (BLC rats) displayed a greater exploratory activity. On day 2, each of the rats was placed in the “shock” arm of the maze, and all of the sham and half of the BLC rats received footshocks. A 24-hr retention test assessed the freezing, time spent per arm, entries per arm, and initial entry into the shock arm. As previously reported, shocked BLC rats displayed little freezing. However, the other measures indicated that the shocked BLC rats remembered the fear conditioning. They entered less readily and less often and spent less time in the shock arm than did the control nonshocked BLC rats. Compared with the sham rats, the shocked BLC rats entered more quickly and more often and spent more time in the shock arm. These findings indicate that an intact BLC is not essential for the formation and expression of long-term cognitive/explicit memory of contextual fear conditioning.
Resumo:
Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA–pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate–sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.
Resumo:
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, Delta S1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical Delta S1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, mu 1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion.
Resumo:
The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.