994 resultados para BASE GRANULAR
Resumo:
71 p.
Resumo:
94 p.
Resumo:
73 p.
Resumo:
The effect of base dissipation on the granular flow down an inclined plane is examined by altering the coefficient of restitution between the moving and base particles in discrete element (DE) simulations. The interaction laws between two moving particles are kept fixed, and the coefficient of restitution (damping constant in the DE simulations) between the base and moving particles are altered to reduce dissipation, and inject energy from the base. The energy injection does result in an increase in the strain rate by up to an order of magnitude, and the temperature by up to two orders of magnitude at the base. However, the volume fraction, strain rate and temperature profiles in the bulk (above about 15 particle diameters from the base) are altered very little by the energy injection at the base. We also examine the variation of h(stop), the minimum height at the cessation of flow, with energy injection from the base. It is found that at a fixed angle of inclination, h(stop) decreases as the energy dissipation at the base decreases.
Resumo:
Particle simulations based on the discrete element method are used to examine the effect of base roughness on the granular flow down an inclined plane. The base is composed of a random configuration of fixed particles, and the base roughness is decreased by decreasing the ratio of diameters of the base and moving particles. A discontinuous transition from a disordered to an ordered flow state is observed when the ratio of diameters of base and moving particles is decreased below a critical value. The ordered flowing state consists of hexagonally close packed layers of particles sliding over each other. The ordered state is denser (higher volume fraction) and has a lower coordination number than the disordered state, and there are discontinuous changes in both the volume fraction and the coordination number at transition. The Bagnold law, which states that the stress is proportional to the square of the strain rate, is valid in both states. However, the Bagnold coefficients in the ordered flowing state are lower, by more than two orders of magnitude, in comparison to those of the disordered state. The critical ratio of base and moving particle diameters is independent of the angle of inclination, and varies very little when the height of the flowing layer is doubled from about 35 to about 70 particle diameters. While flow in the disordered state ceases when the angle of inclination decreases below 20 degrees, there is flow in the ordered state at lower angles of inclination upto 14 degrees. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4710543]
Resumo:
The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.
Resumo:
The objectives of this final report; Iowa Highway Research Board Project HR-99 by J.M. Hoover, was to evaluate the various factors influencing the stability of granular base course mixes.
Resumo:
This report concerns the stabilization of three crushed limestones by an ss-1 asphalt emulsion and an asphalt cement, 120-150 penetration. Stabilization is evaluated by marshall stability and triaxial shear tests. Test specimens were compacted by the marshall, standard proctor and vibratory methods. Stabilization is evaluated primarily by triaxial shear tests in which confining pressures of 0 to 80 psi were used. Data were obtained on the angle of internal friction, cohesion, volume change, pore water pressure and strain characteristics of the treated and untreated aggregates. The MOHR envelope, bureau of reclamation and modified stress path methods were used to determine shear strength parameters at failure. Several significant conclusions developed by the authors are as follows: (1) the values for effective angle of internal friction and effective cohesion were substantially independent of asphalt content, (2) straight line MOHR envelopes of failure were observed for all treated stones, (3) bituminous admixtures did little to improve volume change (deformation due to load) characteristics of the three crushed limestones, (4) with respect to pore water characteristics (pore pressures and suctions due to lateral loading), bituminous treatment notably improved only the bedford stone, and (5) at low lateral pressures bituminous treatments increased stability by limiting axial strain. This would reduce rutting of highway bases. At high lateral pressures treated stone was less stable than untreated stone.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.
Resumo:
The use of geogrids in granular pavement layers could increase the modulus and the stiffness of granular layer and hence the required layer thickness can be reduced. Though, geogrids are being used in granular pavements to provide lateral restraint, bearing capacity, and membrane tension support, very limited studies have been carried out to investigate the effects of geogrids on modulus and stiffness of granular layer. In this study, two sections of a granular pavement were constructed: one with a geogrid at the bottom of the base layer and the other without a geogrid. Two sections were then tested using Falling Weight Deflectometer (FWD) and FWD results were analysed to determine the effect of geogrid on the overall modulus and stiffness of the granular pavement. The results suggested that the pavement section with geogrid has higher overall modulus and deflection ratio compared to the pavement section without geogrid.
Resumo:
Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.