997 resultados para BALLOON MODEL


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BID), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BID, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (I)CM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acute thrombosis can be induced in rabbits by a triggering protocol using Russell's viper venom and histamine given after 8 months of a 1% cholesterol diet and balloon desendothelization. In the present study, we tested the hypothesis that aortic desendothelization performed 4 months before the triggering protocol without a high cholesterol diet is a highly effective and less expensive way of producing arterial atherosclerosis and thrombosis. Nineteen male New Zealand white rabbits on a normal diet were studied. The control group (N = 9) received no intervention during the 4-month observation period, while the other group (N = 10) was submitted to aortic balloon desendothelization using a 4F Fogarty catheter. At the end of this period, all animals were killed 48 h after receiving the first dose of the triggering treatment. Eight of 10 rabbits (80%) in the balloon-trauma group presented platelet-rich arterial thrombosis while none of the animals in the control group had thrombus formation (P<0.01). Thus, this model, using balloon desendothelization without dietary manipulation, induces arterial atherosclerosis and thrombosis and may provide possibilities to test new therapeutic approaches

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report on a study conducted using the Middle Atmospheric Nitrogen TRend Assessment (MANTRA) balloon measurements of stratospheric constituents and temperature and the Canadian Middle Atmosphere Model (CMAM). Three different kinds of data are used to assess the inter-consistency of the combined dataset: single profiles of long-lived species from MANTRA 1998, sparse climatologies from the ozonesonde measurements during the four MANTRA campaigns and from HALOE satellite measurements, and the CMAM climatology. In doing so, we evaluate the ability of the model to reproduce the measured fields and to thereby test our ability to describe mid-latitude summertime stratospheric processes. The MANTRA campaigns were conducted at Vanscoy, Saskatchewan, Canada (52◦ N, 107◦ W)in late August and early September of 1998, 2000, 2002 and 2004. During late summer at mid-latitudes, the stratosphere is close to photochemical control, providing an ideal scenario for the study reported here. From this analysis we find that: (1) reducing the value for the vertical diffusion coefficient in CMAM to a more physically reasonable value results in the model better reproducing the measured profiles of long-lived species; (2) the existence of compact correlations among the constituents, as expected from independent measurements in the literature and from models, confirms the self-consistency of the MANTRA measurements; and (3) the 1998 measurements show structures in the chemical species profiles that can be associated with transport, adding to the growing evidence that the summertime stratosphere can be much more disturbed than anticipated. The mechanisms responsible for such disturbances need to be understood in order to assess the representativeness of the measurements and to isolate longterm trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the arterial response to cobalt-chromium stents with and without polymer coating (Camouflage (R), Hemoteq AG, Wuerselen, Germany) implanted in pigs. Cobalt-chromium balloon-expandable stents (4 x 16 mm) were implanted in the common carotid arteries of nine pigs. Histological analysis of endothelialization, inflammation and injury was performed one month later. All stents were successfully deployed, and all but one animal survived the 30 study days. All arteries were patent. Endothelialization was nearly complete in most sections of all carotid stents in both groups. There were mild inflammatory infiltrate and mild-to-moderate injury, which were associated with the stent shafts and not significantly different between groups. Our findings suggest that, in porcine carotid arteries, the histological response to balloon-expandable cobalt-chromium stents coated with polymer (Camouflage (R), Hemoteq AG) is similar to the response to non-coated cobalt-chromium stents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The objective of this article is to describe the development of an anatomically accurate simulator in order to aid the training of a perinatal team in the insertion and removal of a fetal endoscopic tracheal occlusion (FETO) balloon in the management of prenatally diagnosed congenital diaphragmatic hernia. Methods An experienced perinatal team collaborated with a medical sculptor to design a fetal model for the FETO procedure. Measurements derived from 28-week fetal magnetic resonance imaging were used in the development of an anatomically precise simulated airway within a silicone rubber preterm fetal model. Clinician feedback was then used to guide multiple iterations of the model with serial improvements in the anatomic accuracy of the simulator airway. Results An appropriately sized preterm fetal mannequin with a high-fidelity airway was developed. The team used this model to develop surgical skills with balloon insertion, and removal, and to prepare the team for an integrated response to unanticipated delivery with the FETO balloon still in situ. Conclusions This fetal mannequin aided in the ability of a fetal therapy unit to offer the FETO procedure at their center for the first time. This model may be of benefit to other perinatal centers planning to offer this procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transluminal coronary angioplasty is a routine therapeutic intervention in coronary heart disease. Despite the high rate of primary success, restenosis continues to be its major limitation. Porcine models have been considered to be the most adequate experimental models for studying restenosis. One limitation of porcine models is the need for radiological guidance and the expenses involved. The objective of the present study was to adapt an experimental model of angioplasty in the porcine carotid artery that does not require radiological equipment. Eight animals were used to develop the technique of balloon injury to the common carotid artery by dissection without radiological guidance. This technique was then employed in six other animals. Under anesthesia, the left common carotid artery was dissected and incised at the carotid sinus for insertion of an over-the-wire angioplasty balloon towards the aorta. Overstretch injury of the carotid artery was performed under direct visualization. After 30 days, the arteries were excised and pressure-fixated. Uninjured carotid arteries from 3 additional animals were used as controls. A decreased luminal area associated with intimal hyperplasia and medial reaction was observed in all injured arteries. Immunohistochemistry identified the intimal hyperplastic cells as smooth muscle cells. Computerized morphometry of the ballooned segments revealed the following mean areas: lumen 2.12 mm2 (± 1.09), intima 0.22 mm2 (± 0.08), media 3.47 mm2 (± 0.67), and adventitia 1.11 mm2 (± 0.34). Our experimental model of porcine carotid angioplasty without radiological guidance induced a vascular wall reaction and permitted the quantification of this response. This porcine model may facilitate the study of vascular injury and its response to pharmacological interventions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporal relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is important in the biophysical modeling and interpretation of the hemodynamic response to activation, particularly in the context of magnetic resonance imaging and the blood oxygen level-dependent signal. Grubb et al. (1974) measured the steady state relationship between changes in CBV and CBF after hypercapnic challenge. The relationship CBV proportional to CBFPhi has been used extensively in the literature. Two similar models, the Balloon (Buxton et al., 1998) and the Windkessel (Mandeville et al., 1999), have been proposed to describe the temporal dynamics of changes in CBV with respect to changes in CBF. In this study, a dynamic model extending the Windkessel model by incorporating delayed compliance is presented. The extended model is better able to capture the dynamics of CBV changes after changes in CBF, particularly in the return-to-baseline stages of the response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a stratosphere–troposphere composition–climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of the peak global stratospheric aerosol burden are in the range 19 to 26 Tg, or 3.7 to 6.7 Tg of sulfur assuming a composition of between 59 and 77 % H2SO4. In light of this large uncertainty range, we performed two main simulations with 10 and 20 Tg of SO2 injected into the tropical lower stratosphere. Simulated stratospheric aerosol properties through the 1991 to 1995 period are compared against a range of available satellite and in situ measurements. Stratospheric aerosol optical depth (sAOD) and effective radius from both simulations show good qualitative agreement with the observations, with the timing of peak sAOD and decay timescale matching well with the observations in the tropics and mid-latitudes. However, injecting 20 Tg gives a factor of 2 too high stratospheric aerosol mass burden compared to the satellite data, with consequent strong high biases in simulated sAOD and surface area density, with the 10 Tg injection in much better agreement. Our model cannot explain the large fraction of the injected sulfur that the satellite-derived SO2 and aerosol burdens indicate was removed within the first few months after the eruption. We suggest that either there is an additional alternative loss pathway for the SO2 not included in our model (e.g. via accommodation into ash or ice in the volcanic cloud) or that a larger proportion of the injected sulfur was removed via cross-tropopause transport than in our simulations. We also critically evaluate the simulated evolution of the particle size distribution, comparing in detail to balloon-borne optical particle counter (OPC) measurements from Laramie, Wyoming, USA (41° N). Overall, the model captures remarkably well the complex variations in particle concentration profiles across the different OPC size channels. However, for the 19 to 27 km injection height-range used here, both runs have a modest high bias in the lowermost stratosphere for the finest particles (radii less than 250 nm), and the decay timescale is longer in the model for these particles, with a much later return to background conditions. Also, whereas the 10 Tg run compared best to the satellite measurements, a significant low bias is apparent in the coarser size channels in the volcanically perturbed lower stratosphere. Overall, our results suggest that, with appropriate calibration, aerosol microphysics models are capable of capturing the observed variation in particle size distribution in the stratosphere across both volcanically perturbed and quiescent conditions. Furthermore, additional sensitivity simulations suggest that predictions with the models are robust to uncertainties in sub-grid particle formation and nucleation rates in the stratosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo foi a padronização de modelo experimental de coração isolado parabiótico em coelhos, testando sua estabilidade e durabilidade, para fins de pesquisa cardiovascular. Foram utilizados 66 coelhos raça Norfolk-2000 divididos em grupo doador do coração isolado e animais suporte, totalizando 33 preparações. Mediante auxilio de bombas peristálticas estabeleceu-se suporte circulatório para o coração isolado mantendo-se fluxo constante(16ml/min.). Um balão intraventricular foi inserido no ventrículo esquerdo, sendo ajustado para gerar pressão diastólica de ± 10mmHg. A freqüência foi fixada em 120 batimentos por minuto mediante o uso de marcapasso. Foram avaliadas variáveis hemodinâmicas, laboratoriais e anatomopatológicas. Das 33 preparações, 13 foram excluídas mediante critérios pré-estabelecidos. Das 20 restantes, 10 cumpriram o tempo máximo do protocolo(180 minutos). Com relação ao animal suporte houve deterioração hemodinâmica progressiva c/ queda da pressão arterial média(89,30±6,09mmHg->47,50±6,35mmHg). Com relação ao corações isolado, das 10 preparações que cumpriram os 180 minutos de protocolo, houve estabilidade hemodinâmica. As variáveis laboratoriais mostraram queda progressiva do sódio, potássio e hemoglobina, sendo compatível com hemodiluição. O exame anatomopatológico mostrou espaçamento maior entre fibras, compatível com edema. O presente modelo mostrou estabilidade e atividade de 100% das preparações em 60 minutos, havendo perdas progressivas chegando a 50% das preparações em atividade em 180 minutos. O presente modelo, dentro das limitações estabelecidas é viável para pesquisas cardiovasculares.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To ascertain whether the volume and circumference of the lacrimal sac and nasolacrimal duct as measured by contrast-enhanced computed tomographic dacryocystography (CT-DCG) before and after balloon dacryoplasty could be used to predict clinical success in children with congenital nasolacrimal obstruction. METHODS Nasolacrimal ducts of children aged 2 to 6 years with clinical signs of congenital nasolacrimal duct obstruction undergoing balloon dilation were imaged with contrast-enhanced CT-DCG before and 5 minutes after the procedure. The circumference of the most dilated portion of the lacrimal sac was measured on the axial plane. The volume of contrast within the nasolacrimal duct and sac was also measured before and after the procedure. Clinical success was defined as the disappearance of signs of epiphora. RESULTS A total of 18 nasolacrimal ducts of 13 children were included. The average circumference of the most dilated portion of the lacrimal sac was 1.30 +/- 0.45 cm (range, 0.64-2.50 cm) before the procedure. The average contrast volume was 0.12 +/- 0.08 cm(3) (range, 0.01-0.38 cm(3)) before and 0.07 +/- 0.06 cm(3) (range, 0.01-0.20 cm(3)) after (P = 0.01). Data were analyzed using multivariate logistic regression with a backward variable input model; a decrease in contrast volume before and after dilation (P = 0.04) was associated with clinical success, whereas the larger size of the most dilated portion of the lacrimal sac (P = 0.01) was associated with clinical failure. CONCLUSIONS Contrast-enhanced CT-DCG provides useful information about nasolacrimal anatomy in children with congenital nasolacrimal duct obstruction. The decrease in contrast volume before and after balloon dilation was predictive of success; A larger size of the most dilated portion of the lacrimal sac was associated with clinical failure. (J AAPOS 2012;16:464-467)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS To investigate a pressure-controlled intermittent coronary sinus occlusion (PICSO) system in an ischaemia/reperfusion model. METHODS AND RESULTS We randomly assigned 18 pigs subjected to 60 minutes ischaemia by left anterior descending (LAD) coronary artery balloon occlusion to PICSO (n=12, groups A and B) or to controls (n=6, group C). PICSO started 10 minutes before (group A), or 10 minutes after (group B) reperfusion and was maintained for 180 minutes. A continuous drop of distal LAD pressure was observed in group C. At 180 minutes of reperfusion, LAD diastolic pressure was significantly lower in group C compared to groups A and B (p=0.02). LAD mean pressure was significantly less than the systemic arterial mean pressure in group C (p=0.02), and the diastolic flow slope was flat, compared to groups A and B (p=0.03). IgG and IgM antibody deposition was significantly higher in ischaemic compared to non-ischaemic tissue in group C (p<0.05). Significantly more haemorrhagic lesions were seen in the ischaemic myocardium of group C, compared to groups A and B (p=0.002). The necrotic area differed non-significantly among groups. CONCLUSIONS PICSO was safe and effective in improving coronary perfusion pressure and reducing antibody deposition consistent with reduced microvascular obstruction and ischaemia/reperfusion injury.