948 resultados para BALANCE CONTROL
Resumo:
This work describes how genetic programming is applied to evolving controllers for the minimum time swing up and inverted balance tasks of the continuous state and action: limited torque acrobot. The best swing-up controller is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, shorter than that of Coulom (2004), who applied the same constraints on the applied torque values, and to take only slightly longer than the approach by Lai et al. (2009) where far larger torque values were allowed. The best balance controller is able to balance the acrobot in the inverted position when starting from the balance position for the length of time used in the fitness function in all runs; furthermore, 47 out of 50 of the runs evolve controllers able to maintain the balance position for an extended period, an improvement on the balance controllers generated by Dracopoulos and Nichols (2012), which this paper is extended from. The most successful balance controller is also able to balance the acrobot when starting from a small offset from the balance position for this extended period.
Resumo:
This thesis investigated attention focus and balance control in eighteen healthy young adults and eighteen healthy older adults. All participants performed sixteen consecutive trials of a balance task which involved standing for 30-s on an unstable platform that could rotate only in the roll direction. There were no attention focus instructions provided on any of the sixteen trials. Following the completion of the initial and final attempt in the series, participants reported "where" their attention had been focused when performing the task. The results showed differences in balance between young and older adults and improvements in balance with practice in both young and older adults. However, there were no differences in attention focus strategies between young and older adults. Both age groups directed attention to multiple sources during the balance task. An equal focus on internal (i.e., feet, trunk, and other body parts) and external (i.e., the platform) sources with little focus on events not related to the task dominated on the first attempt of the balance task. Focus on internal sources was maintained and focus on events not related to the task increased at the expense of focus on external sources on the final attempt of the balance task. Following the series of sixteen trials to establish "natural" attention focus, participants performed three randomly presented trials, each with specific attention focus instructions (i.e., think about minimizing movements of the feet, the trunk, or the platform). The results showed that, in contrast to the literature, instructions to focus on an internal source, the trunk, actually augmented control of the task as reflected in reduced trunk sway whereas instructions to focus on an internal source, the feet, or an external source, the platform, did not benefit performance on the task. Thus, the distance fi-om the interaction point of the body with the external source is critical and may not depend on whether the source is internal or external. Thus, a global attention focus instruction may not be beneficial and the nature of the task should be considered when adopting attention focus instructions for young and older adults.
Resumo:
The current thesis investigated the effects of a 12-week multifactorial exercise and balance training program on balance control in older adults. Participants completed a baseline testing session which included a series of questionnaires, anthropometric measures, and 18 stance and walking tests. Those who were randomly assigned to the exercise group participated in the 12-week training program while the comparison group was asked not to change anything in his/her lifestyle during the 12-week control period, but were invited to participate in the training program after his/her control period. The same testing protocol was repeated after the 12-week period. The results indicated that there were improvements in the time to complete the walking tests but no change in trunk sway in both the exercise and comparison groups. No changes in stance durations or trunk sway were observed. The findings suggest that the current training program showed no significant improvement in balance control in healthy older adults.
Resumo:
Localized muscular fatigue has been identified to have detrimental effects on balance control, an important skill for everyday life. Manipulation of attention focus instructions has been shown to benefit performance of various motor skills including balance and has been found to facilitate endurance during fatiguing tasks. The purpose of this thesis was to determine if the use of attention focus instructions could attenuate the effects of muscular fatigue on balance control. Twenty-four participants performed a balance task (two-legged stance on an unstable platform) before and after a fatigue protocol. Trunk sway, platform excursions, and lower limb muscle activity was measured. Results suggest that use of either internal or external attention focus instructions can reduce the immediate effects of muscular fatigue of the lower limb on balance control as shown through reduced trunk sway and platform excursions. These results have relevance for individuals performing balance tasks in a fatigued state.
Resumo:
Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.
Resumo:
Study Design. Quiet stance on supporting bases with different lengths and with different visual inputs were tested in 24 study participants with chronic low back pain (LBP) and 24 matched control subjects. Objectives. To evaluate postural adjustment strategies and visual dependence associated with LBP. Summary of Background Data. Various studies have identified balance impairments in patients with chronic LBP, with many possible causes suggested. Recent evidence indicates that study participants with LBP have impaired trunk muscle control, which may compromise the control of trunk and hip movement during postural adjustments ( e. g., hip strategy). As balance on a short base emphasizes the utilization of the hip strategy for balance control, we hypothesized that patients with LBP might have difficulties standing on short bases. Methods. Subjects stood on either flat surface or short base with different visual inputs. A task was counted as successful if balance was maintained for 70 seconds during bilateral stance and 30 seconds during unilateral stance. The number of successful tasks, horizontal shear force, and center-of-pressure motion were evaluated. Results. The hip strategy was reduced with increased visual dependence in study participants with LBP. The failure rate was more than 4 times that of the controls in the bilateral standing task on short base with eyes closed. Analysis of center-of-pressure motion also showed that they have inability to initiate and control a hip strategy. Conclusions. The inability to control a hip strategy indicates a deficit of postural control and is hypothesized to result from altered muscle control and proprioceptive impairment.
Resumo:
Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.
Resumo:
In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance, namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control strategy is used to switch between the swingup and the balance control. Experimental results are presented.
Resumo:
Background Little or no research has been done in the overweight child on the relative contribution of multisensory information to maintain postural stability. Therefore, the purpose of this study was to investigate postural balance control under normal and experimentally altered sensory conditions in normal-weight versus overweight children. Methods Sixty children were stratified into a younger (7–9 yr) and an older age group (10–12 yr). Participants were also classified as normal-weight (n = 22) or overweight (n = 38), according to the international BMI cut-off points for children. Postural stability was assessed during quiet bilateral stance in four sensory conditions (eyes open or closed, normal or reduced plantar sensation), using a Kistler force plate to quantify COP dynamics. Coefficients of variation were calculated as well to describe intra-individual variability. Findings Removal of vision resulted in systematically higher amounts of postural sway, but no significant BMI group differences were demonstrated across sensory conditions. However, under normal conditions lower plantar cutaneous sensation was associated with higher COP velocities and maximal excursion of the COP in the medial-lateral direction for the overweight group. Regardless of condition, higher variability was shown in the overweight children within the 7–9 yr old subgroup for postural sway velocity, and more specifically medial–lateral velocity. Interpretation In spite of these subtle differences, results did not establish any clear underlying sensory organization impairments that may affect standing balance performance in overweight children compared to normal-weight peers. Consequently, it is believed that other factors account for overweight children's functional balance deficiencies.
Resumo:
Proprioceptive information from the foot/ankle provides important information regarding body sway for balance control, especially in situations where visual information is degraded or absent. Given known increases in catastrophic injury due to falls with older age, understanding the neural basis of proprioceptive processing for balance control is particularly important for older adults. In the present study, we linked neural activity in response to stimulation of key foot proprioceptors (i.e., muscle spindles) with balance ability across the lifespan. Twenty young and 20 older human adults underwent proprioceptive mapping; foot tendon vibration was compared with vibration of a nearby bone in an fMRI environment to determine regions of the brain that were active in response to muscle spindle stimulation. Several body sway metrics were also calculated for the same participants on an eyes-closed balance task. Based on regression analyses, multiple clusters of voxels were identified showing a significant relationship between muscle spindle stimulation-induced neural activity and maximum center of pressure excursion in the anterior-posterior direction. In this case, increased activation was associated with greater balance performance in parietal, frontal, and insular cortical areas, as well as structures within the basal ganglia. These correlated regions were age- and foot-stimulation side-independent and largely localized to right-sided areas of the brain thought to be involved in monitoring stimulus-driven shifts of attention. These findings support the notion that, beyond fundamental peripheral reflex mechanisms, central processing of proprioceptive signals from the foot is critical for balance control.
Resumo:
Balance maintenance relies on a complex interplay between many different sensory modalities. Although optimal multisensory processing is thought to decline with ageing, inefficient integration is particularly associated with falls in older adults. We investigated whether improved balance control, following a novel balance training intervention, was associated with more efficient multisensory integration in older adults, particularly those who have fallen in the past. Specifically, 76 healthy and fall-prone older adults were allocated to either a balance training programme conducted over 5 weeks or to a passive control condition. Balance training involved a VR display in which the on-screen position of a target object was controlled by shifts in postural balance on a Wii balance board. Susceptibility to the sound-induced flash illusion, before and after the intervention (or control condition), was used as a measure of multisensory function. Whilst balance and postural control improved for all participants assigned to the Intervention group, improved functional balance was correlated with more efficient multisensory processing in the fall-prone older adults only. Our findings add to growing evidence suggesting important links between balance control and multisensory interactions in the ageing brain and have implications for the development of interventions designed to reduce the risk of falls.
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Objective: The objective of this study was to analyze the efficacy of multisensory versus muscle strengthening to improve postural control in healthy community-dwelling elderly. Participants: We performed a single-blinded study with 46 community-dwelling elderly allocated to strength (GS, n = 23; 70.18 +/- 4.8 years 22 women and 1 man) and multisensory exercises groups (GM, n = 23; 68.8 +/- 5.9 years; 22 women and 1 man) for 12 weeks. Methods: We performed isokinetic evaluations of muscle groups in the ankle and foot including dorsiflexors, plantar flexors, inversion, and eversion. The oscillation of the center of pressure was assessed with a force platform. Results: The GM group presented a reduction in the oscillation (66.8 +/- 273.4 cm(2) to 11.1 +/- 11.6 cm(2); P = 0.02), which was not observed in the GS group. The GM group showed better results for the peak torque and work than the GS group, but without statistical significance. Conclusion: Although the GM group presented better results, it is not possible to state that one exercise regimen proved more efficacious than the other in improving balance control.
Resumo:
Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.