540 resultados para BAINITIC FERRITE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ neutron diffraction, transmission electron microscopy (TEM) and atom probe tomography (APT) have been used to study the early stages of bainite transformation in a 2 mass% Si nano-bainitic steel. It was observed that carbon redistribution between the bainitic ferrite and retained austenite at the early stages of the bainite transformation at low isothermal holding occurred in the following sequence: (i) formation of bainitic ferrite nuclei within carbon-depleted regions immediately after the beginning of isothermal treatment; (ii) carbon partitioning immediately after the formation of bainitic ferrite nuclei but substantial carbon diffusion only after 33 min of bainite isothermal holding; (iii) formation of the carbon-enriched remaining austenite in the vicinity of bainitic laths at the beginning of the transformation; (iv) segregation of carbon to the dislocations near the austenite/ferrite interface; and (v) homogeneous redistribution of carbon within the remaining austenite with the progress of the transformation and with the formation of bainitic ferrite colonies. Bainitic ferrite nucleated at internal defects or bainite/austenite interfaces as well as at the prior austenite grain boundary. Bainitic ferrite has been observed in the form of an individual layer, a colony of layers and a layer with sideplates at the early stages of transformation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200 and 350°C bainitic transformation temperatures. The microstructure was consisted of bainitic ferrite lath and retained austenite for both heat treatment conditions. The crystallographic analysis revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with their parent austenite. The isothermal bainite transformation temperature has a significant effect on the retained austenite characteristics and the variant selection of the bainitic ferrite laths. In general, a decrease in the isothennal bainite transformation temperature refined the bainitic structure and weakened the variant selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the current study, a novel approach was employed to produce a unique combination of ultrafine ferrite grains and low temperature bainite in a low carbon steel with a high hardenability. The thermomechanical route included warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to bainitic transformation regime (i.e. 400-250°C). The resultant microstructure was ultrafine ferrite grains (i.e. <4μm) and very fine bainite consisting of bainitic ferrite laths with high dislocation density and retained austenite films. This microstructure offers a unique combination of ultimate tensile strength and elongation due to the presence of ductile fine ferrite grains and hard low temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to form a nano-scale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with the parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. The presence of fine C-rich clusters and Fe-C carbides with a wide range of compositions in bainitic ferrite was revealed by Three-dimensional Atom Probe Tomography (APT). The high carbon content of bainitic ferrite compared to the para-equilibrium level of carbon in ferrite, absence of segregation of carbon to the austenite/bainitic ferrite interface and absence of partitioning of substitutional elements between the retained austenite and bainitic ferrite were also found using APT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of pre-straining and bake-hardening on the mechanical properties of thermomechanically processed 0.2C-1.5Si-1.5Mn-0.2Mo-0.004Nb (wt%) steel was analysed using tensile test, transmission electron microscopy (TEM) and atom probe tomography (APT). This steel after processing had high strength (~1200MPa) and good ductility (~20%) due to the formation of fully bainitic microstructure with nano-layers of bainitic ferrite and retained austenite. The bake hardening (BH) of pre-strained (PS) samples increased the yield strength of steel up to 690MPa and showed the bake-hardening response of 220MPa due to the operation of several strengthening mechanisms such as transformation induced plasticity during pre-straining and pinning the dislocations by carbon during bake-hardening treatment. The carbon content of the bainitic ferrite and retained austenite before and after bake-hardening treatment, the solute distribution between these phases and the local composition of fine Fe-C clusters and particles formed during bake-hardening treatment was calculated using APT. The bainitic ferrite and retained austenite microstructural characteristics such as thickness of the layers and their dislocation density before and after bake-hardening treatment were studied using TEM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to produce a nano-structured bainitic steel. The microstructure consisted of nanobainitic ferrite laths with a high dislocation density and retained austenite films having extensive twins. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with their parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. Atom Probe Tomography (APT) revealed that the carbon content of nanobainitic ferrite laths was much higher than expected from the para-equilibrium level. This was explained due to the long heat treatment time, which led to the formation of fine Fe-C clusters on areas with high dislocation densities in bainitic ferrite laths.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanostructured bainitic steels, containing bainitic ferrite laths and retained austenite films, formed at two different isothermal temperatures were compared  for corrosion behavior in chloride-containing solution using electrochemical techniques. The potentiodynamic polarization results suggest that nanostructured bainite formed at 200 °C exhibits marginally higher corrosion resistance compared with that at 350 °C. Post-corrosion analysis of the galvanostatically polarized samples revealed localized corrosion for both the steels, but the degree of attack was higher in the 350 °C steel than in the 200 °C steel. The localized corrosion attack was due to selective dissolution of the retained austenite phase. The higher volume fraction and larger size of retained austenite in the 350 °C steel as compared to that of the 200 °C steel contributed to the pronounced corrosion attack in the 350 °C steel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An Fe-0.26C-1.96Si-2Mn with 0.31Mo (wt%) steel was subjected to a novel thermomechanical processing route to produce fine ferrite with different volume fractions, bainite, and retained austenite. Two types of fine ferrites were found to be: (i) formed along prior austenite grain boundaries, and (ii) formed intragranularly in the interior of austenite grains. An increase in the volume fraction of fine ferrite led to the preferential formation of blocky retained austenite with low stability, and to a decrease in the volume fraction of bainite with stable layers of retained austenite. The difference in the morphology of the bainitic ferrite and the retained austenite after different isothermal ferrite times was found to be responsible for the deterioration of the mechanical properties. The segregation of Mn, Mo, and C at distances of 2-2.5 nm from the ferrite and retained austenite/martensite interface on the retained austenite/martensite site was observed after 2700 s of isothermal hold. It was suggested that the segregation occurred during the austenite-to-ferrite transformation, and that this would decrease the interface mobility, which affects the austenite-to-ferrite transformation and ferrite grain size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan–Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the two-body abrasion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of pre-straining (PS) and bake-hardening (BH) on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) steels after: (i) thermomechanically processing (TMP) and (ii) intercritical annealing. The steels were characterised before and after PS/BH by transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile tests. The main microstructural differences were the higher volume fraction of bainite and more stable retained austenite in the TMP steel. This led to a difference in the strain-hardening behavior before and after BH treatment. The higher dislocation density in ferrite and formation of microbands in the TMP steel after PS and the formation of Fe3C carbides between the bainitic ferrite laths during BH for both steels also affected the strain-hardening behavior. However, both steels after PS/BH treatment demonstrated an increase in the yield and tensile strength.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated  thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The  results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.