983 resultados para BACTERICIDAL ACTIVITY
Resumo:
In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (M phi) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient M phi revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected M phi. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli-or S. aureus-infected wild-type M phi, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX-/- NOS2(-/-) M phi further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX-/- NOS2(-/-) M phi cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria.
Resumo:
Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38?350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional Delta APSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.
Resumo:
Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.
Resumo:
Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.
Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.
Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.
Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.
Resumo:
Propolis has been used in folk medicine since ancient times due to its, many biological properties: such as antimicrobial. antinflammatory, antioxidant, immunomodulatory activities, among others. 'Macrophages play an important role in the early phase of Salmonella infection. In this work, macrophages were prestimated with Brazilian or Bulgarian propolis and subsequently challenged with Salmonella Typhimurium at different macrophage/bacteria ratio. After 60 min of incubation. cells were harvested with Triton-X to lyse the macrophages. To assess the bactericidal activity. The number of colony-forming units (CFU) of S. typhimurium was determined by plating 0.1 mL in 'Mueller Hinton agar. After 24 h. CFU were counted. and the percentage of bactericidal activity was obtained. Propolis from Brazil and Bulgaria enhanced the bactericidal activity of macrophages, depending on its concentration. Brazilian propolis seemed to be more efficient than that from Bulgaria. because of their different chemical composition. In Bulgaria, bees collect the material mainly from the bud exudate of poplar tree, while in Brazil, Baccharis dracunculifolia DC. was shown to be the main propolis source. Our data also showed that the increased bactericidal activity of macrophages involved the participation of oxygen (H2O2) and nitrogen (NO) intermediate metabolites. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Daptomycin monotherapy was superior to ceftriaxone monotherapy and was highly efficacious in experimental pneumococcal meningitis, sterilizing the cerebrospinal fluid (CSF) of three of three rabbits after 4 to 6 h. With daptomycin therapy only a negligible release of [(3)H]choline as marker of cell wall lysis was detectable in the CSF, peaking around 250 cpm/min after 4 h, compared to a peak of around 2,400 cpm/min after 4 to 6 h for the ceftriaxone-treated rabbits.
Resumo:
Bacterial meningitis represents an infection in an area of impaired host defence. Optimal therapy of meningitis requires attaining bactericidal activity within cerebrospinal fluid (CSF). Studies in experimental animal models of meningitis suggest that maximal rates of bacterial killing in vivo and optimal cure rates are achieved when CSF antibiotic concentrations exceed the MBC of the test strain by greater than or equal to ten-fold. The results of clinical trials support this conclusion. In addition, a variable post-antibiotic effect occurs in-vivo after short periods of exposure to antimicrobial activity, thus maintaining therapeutic efficacy with intermittent dosage regimens. These basic principles of therapy are outlined in this review and serve as a basis for rational treatment regimens. For most antibiotics, the optimal dose, dosage interval, and duration of therapy for bacterial meningitis remain to be established.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
An important facet of the Staphylococcus aureus host-pathogen interaction is the ability of the invading bacterium to evade host innate defenses, particularly the cocktail of host antimicrobial peptides. In this work, we showed that IsdA, a surface protein of S. aureus which is required for nasal colonization, binds to lactoferrin, the most abundant antistaphylococcal polypeptide in human nasal secretions. The presence of IsdA on the surface of S. aureus confers resistance to killing by lactoferrin. In addition, the bactericidal activity of lactoferrin was inhibited by addition of phenylmethylsulfonyl fluoride, implicating the serine protease activity of lactoferrin in the killing of S. aureus. Recombinant IsdA was a competitive inhibitor of lactoferrin protease activity. Reciprocally, antibody reactive to IsdA enhanced killing of S. aureus. Thus, IsdA can protect S. aureus against lactoferrin and acts as a protease inhibitor.
Resumo:
The Human Secreted Group IIA Phospholipase A(2) (hsPIA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K h5PLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 mu g/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca2+-independent damaging activity against Liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
This study aimed at evaluating antimicrobial and antibiofilm activity of phenolic compounds present in propolis ethanol extracts (PEE). Seventy per cent ethanol extracts from seven types of propolis, one Green, two Red and four Brown collected in four Brazilian States were prepared and total phenolics, flavonoids, tannins and anthocyanins were assessed by high-performance liquid chromatography (HPLC). Minimum bactericidal concentration (MBC) and inhibitor effect on Staphylococcus aureus biofilm formation and capacity to disrupt established biofilms were assessed towards eight S. aureus isolates from milk of small ruminants with mastitis, one methicillin-resistant S. aureus (MRSA) and S. aureus ATCC 25923. To evaluate different propolis components accountability for bactericidal accomplishment and antibiofilm activity, the results were analysed by the non-parametric Spearman coefficient. Results of phenolic compounds were 216,21 to 312,08 gallic acid milligram equivalent per extract gram (mg EGA/g) of total phenolics, 55,08 to 140,6 quercetin milligram equivalent per extract gram (mg EQ/g) of flavonoids, 118,51 to 3766,16 catechin milligram equivalent per extract gram (mg EC/g) of tannins and 1,03 to 8,39 milligram per extract gram (mg/g) of anthocyanins. Red1 and Red2 showed higher tannin contents, while Red2 exhibited superior amount of anthocyanins and total phenolics. Brown3 presented higher flavonoid quantity. Green, Red1 and Red2 PEE showed the lowest levels of flavonoids, but the higher antimicrobial activity. Most PEE exhibit bactericidal activity at a concentration of 1.6 mg/mL. Brown4 PEE showed the worst capacity to inhibit S. aureus. Green PEE showed to be the most efficient in both preventing and disrupting biofilm. All PEE studied exhibited a better inhibitory activity prior-to than post-biofilm formation. According to non-parametric Spearman correlation analysis, there seems to be a significant negative correlation between the ability to disrupt biofilm and both tannins and anthocyanins contents.
Resumo:
Group IIA secretory phospholipases A(2) (sPLA(2)-II) is generally known to display potent grampositive bactericidal activity, while group IA sPLA(2) (sPLA(2)-I) reportedly is not. In this work, a novel sPLA(2)-I named BFPA was identified from Bungarus fas