994 resultados para B7
Resumo:
To investigate the immunosuppressive properties of mesenchymal stem cells (MSCs), in the present study we examined the immunogenicity of undifferentiated and tri-lineage (chondrocytes, osteoblasts and adipocytes) differentiated rat bone marrow-derived MSCs under xenogeneic conditions. After chondrogenic-differentiation, rat bone marrow-derived MSCs stimulated human peripheral blood monocyte-derived DCs (hDCs), leading to 8- and 4-fold higher lymphocyte proliferation and cytotoxicity than that of undifferentiated MSCs. The Chondrogenic-differentiated MSCs were chemotactic to hDCs in Dunn chamber chemotaxis system and were rosetted by hDCs inrosette assays. Flow cytometry analysis revealed that chondrogenic-differentiated MSCs had promoted hDCs maturation causing higher CD83 expression in hDCs, whereas undifferentiated MSCs, osteogenic-and adipogenic-differentiated MSCs showed inhibitory effect on hDCs maturation. The co-stimulatory molecules B7 were up-regulated only in the chondrogenic-differentiated MSCs. After blocking B7 molecules with specific monoclonal antibodies in the chondrogenic-differentiated MSCs, CD83 expression of co-cultured hDCs was greatly reduced. In conclusion, chondrogenic differentiation may increase the immunogenicity of MSCs, leading to stimulation of DCs. The up-regulated expression of B7 molecules on the chondrogenic differentiated MSCs may be partially responsible for this event.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Inmunología) UANL
Resumo:
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Resumo:
One of the most important immunopathological consequence of intraperitoneal alveolar echinococcosis (AE) in the mouse is suppression of T cell-mediated immune responses. We investigated whether and how intraperitoneal macrophages (MØs) are, respectively, implicated as antigen-presenting cells (APCs). In a first step we showed that peritoneal MØs from infected mice (AE-MØs) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells. In a subsequent step, AE-MØs as well as naïve MØs (positive control) proved their ability to uptake and process C-Ova fluorescein isthiocyanate (FITC). Furthermore, in comparison with naïve MØs, the surface expression of Ia molecules was up-regulated on AE-MØs at the early stage of infection, suggesting that AE-MØs provide the first signal via the antigen-Ia complex. To study the accessory activity of MØs, AE-MØs obtained at the early and late stages of infection were found to decrease Con A-induced proliferation of peritoneal naïve T cells as well as of AE-sensitized peritoneal T cells, in contrast to stimulation with naïve MØs. The status of accessory molecules was assessed by analysing the expression level of costimulatory molecules on AE-MØs, with naïve MØs as controls. It was found that B7-1 (CD80) and B7-2 (CD86) expression remained unchanged, whereas CD40 was down-regulated and CD54 (= ICAM-1) was slightly up-regulated. In a leucocyte reaction of AE-MØs with naïve or AE-T cells, both types of T cells increased their proliferative response when CD28 - the ligand of B7 receptors - was exposed to anti-CD28 in cultures. Conversely to naïve MØs, pulsing of AE-MØs with agonistic anti-CD40 did not even partially restore their costimulatory activity and failed to increase naïve or AE-T cell proliferation. Neutralizing anti-B7-1, in combination with anti-B7-2, reduced naïve and AE-T cell proliferation, whereas anti-CD40 treatment of naïve MØs increased their proliferative response to Con A. These results point at the key role of B7 receptors as accessory molecules and the necessity of the integrity of CD40-expression by naïve MØs to improve their accessory activity. Taken together, the obstructed presenting-activity of AE-MØs appeared to trigger an unresponsiveness of T cells, contributing to the suppression of their clonal expansion during the chronic phase of AE-infection.
Resumo:
We have recently reported that psychological stress is associated with a shift in the human type-1/type-2 cytokine balance toward a type-2 cytokine response. The mechanisms of these cytokine alterations are unknown, but likely involve glucocorticoid (GC) modulation of cytokine production. Therefore we sought to characterize the effects of GC on the in vitro human type-1/type-2 cytokine balance. We hypothesized that GC induce a type-2 cytokine shift through modulation of critical regulatory cytokines and alterations in the CD28/B7 costimulatory pathway. ^ We first sought to characterize the effect of the GC, dexamethasone (DEX), on type-1 (IFN-γ, IL-12) and type-2 (IL-4, IL-10) cytokine production by human peripheral blood mononuclear blood cells (pBMC) stimulated with a variety of T-lymphocyte and monocyte stimuli. DEX, at concentrations mimicking stress and supraphysiologic levels of cortisol, decreased IFN-γ and IL-12 production and increased IL-4 and IL-10 production, indicating a shift in the type-1/type-2 cytokine balance toward a type-2 response. Furthermore, both CD4+ and CD8+ T-lymphocytes were susceptible to the cytokine modulating effects of DEX. Furthermore, in the absence of the monocyte, the DEX-induced alterations in T-lymphocyte cytokine production were reduced, indicating that the interaction between the monocyte and T-lymphocyte plays a significant role. ^ We next determined the role of regulatory cytokines, known to modulate the type-1/type-2 cytokine balance, in the DEX-induced cytokine alterations. The addition of the recombinant IL-12p70 and IFN-γ, but not the neutralization of IL-4, IL-10 or IL-13 using monoclonal antibodies, attenuated the DEX-induced type-1/type-2 cytokine alterations. These data suggest that the DEX-induced cytokine alterations are mediated, at least in part, through the initial inhibition type-1 cytokines. Lastly, we investigated the role of the CD28/B7 costimulatory pathway in these cytokine alterations. DEX decreased the expression of CD80 and CD86 on THP-1 cells, a monocyte cell line, and the expression of CD28 and CTLA-4 on PHA-stimulated pBMC. The DEX-induced decrease in CD28 and CTLA-4 expression was attenuated by rhIL-12. Finally, CD28 activation attenuated the DEX-induced decrease in IFN-γ production, suggesting that modulation of the CD28/B7 costimulatory pathway may contribute to the DEX-induced type-1/type-2 cytokine alterations. ^
Accompanying wind measurements for bottle data of cruise B7/84 during the MRI-LDEO cooperative study