984 resultados para B. Interface
Resumo:
Remarkable differences in the shape of the nematic-smectic-B interface in a quasi-two-dimensional geometry have been experimentally observed in three liquid crystals of very similar molecular structure, i.e., neighboring members of a homologous series. In the thermal equilibrium of the two mesophases a faceted rectanglelike shape was observed with considerably different shape anisotropies for the three homologs. Various morphologies such as dendritic, dendriticlike, and faceted shapes of the rapidly growing smectic-B germ were also observed for the three substances. Experimental results were compared with computer simulations based on the phase field model. The pattern forming behavior of a binary mixture of two homologs was also studied.
Resumo:
In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells. Published by Cold Spring Harbor Laboratory Press. Copyright © 2007 The Protein Society.
Resumo:
T cell recognition typically involves both the engagement of a specific T cell receptor with a peptide/major histocompatibility complex (MHC) and a number of accessory interactions. One of the most important interactions is between the integrin lymphocyte function-associated antigen 1 (LFA-1) on the T cell and intracellular adhesion molecule 1 (ICAM-1) on an antigen-presenting cell. By using fluorescence video microscopy and an ICAM-1 fused to a green fluorescent protein, we find that the elevation of intracellular calcium in the T cell that is characteristic of activation is followed almost immediately by the rapid accumulation of ICAM-1 on a B cell at a tight interface between the two cells. This increased density of ICAM-1 correlates with the sustained elevation of intracellular calcium in the T cell, known to be critical for activation. The use of peptide/MHC complexes and ICAM-1 on a supported lipid bilayer to stimulate T cells also indicates a major role for ICAM-1/LFA-1 in T cell activation but, surprisingly, not for adhesion, as even in the absence of ICAM-1 the morphological changes and adhesive characteristics of an activated T cell are seen in this system. We suggest that T cell antigen receptor-mediated recognition of a very small number of MHC/peptide complexes could trigger LFA-1/ICAM-1 clustering and avidity regulation, thus amplifying and stabilizing the production of second messengers.
Resumo:
We use the density functional theory/local-density approximation (DFT/LDA)-1/2 method [L. G. Ferreira , Phys. Rev. B 78, 125116 (2008)], which attempts to fix the electron self-energy deficiency of DFT/LDA by half-ionizing the whole Bloch band of the crystal, to calculate the band offsets of two Si/SiO(2) interface models. Our results are similar to those obtained with a ""state-of-the-art"" GW approach [R. Shaltaf , Phys. Rev. Lett. 100, 186401 (2008)], with the advantage of being as computationally inexpensive as the usual DFT/LDA. Our band gap and band offset predictions are in excellent agreement with experiments.
Resumo:
We model interface formation by metal deposition on the conjugated polymer poly-para-phenylene vinylene, studying direct aluminum and layered aluminum-calcium structures Al/PPV and Al/Ca/PPV. To do that we use classical molecular dynamics simulations, checked by ab initio density-functional theory calculations, for selected relevant configurations. We find that Al not only migrates easily into the film, with a strong charge transfer to the neighboring chains, but also promotes rearrangement of the polymer in the interfacial region to the hexagonal structure. On the other hand, our results indicate that a thin Ca layer is sufficient to protect the film and maintain a well-defined metal/polymer interface, and that also a thin Al capping layer may protect the whole from environmental degradation.
Resumo:
The exploitation of aqueous biphasic extraction is proposed for the first time in flow analysis This extraction strategy stands out for being environmentally attractive since it is based in the utilization of two immiscible phases that are intrinsically aqueous The organic solvents of the traditional liquid-liquid extractions ale no longer used, being replaced by non-toxic, non-flammable and non-volatile ones. A single interface flow analysis (SIFA) system was implemented to carry out the extraction process due to its favourable operational characteristics that include the high automation level and simplicity of operation, the establishment of a dynamic interface where the mass transfer occurred between the two immiscible aqueous phases, and the versatile control over the extraction process namely the extraction time The application selected to demonstrate the feasibility of SIFA to perform this aqueous biphasic extraction was the pre-concentration of lead. After extraction, lead reacted with 8-hydroxyquinoline-5-sulfonic acid and the resulting product was determined by a fluorimetric detector included in the flow manifold. Therefore, the SIFA single interface was used both as extraction (enrichment) and reaction interface. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
Single interface flow systems (SIFA) present some noteworthy advantages when compared to other flow systems, such as a simpler configuration, a more straightforward operation and control and an undemanding optimisation routine. Moreover, the plain reaction zone establishment, which relies strictly on the mutual inter-dispersion of the adjoining solutions, could be exploited to set up multiple sequential reaction schemes providing supplementary information regarding the species under determination. In this context, strategies for accuracy assessment could be favourably implemented. To this end, the sample could be processed by two quasi-independent analytical methods and the final result would be calculated after considering the two different methods. Intrinsically more precise and accurate results would be then gathered. In order to demonstrate the feasibility of the approach, a SIFA system with spectrophotometric detection was designed for the determination of lansoprazole in pharmaceutical formulations. Two reaction interfaces with two distinct pi-acceptors, chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were implemented. Linear working concentration ranges between 2.71 x 10(-4) to 8.12 x 10(-4) mol L(-1) and 2.17 x 10(-4) to 8.12 x 10(-4) mol L(-1) were obtained for DDQ and CIA methods, respectively. When compared with the results furnished by the reference procedure, the results showed relative deviations lower than 2.7%. Furthermore. the repeatability was good, with r.s.d. lower than 3.8% and 4.7% for DDQ and CIA methods, respectively. Determination rate was about 30 h(-1). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA)was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing job`s method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4) mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
Resumo:
Controlling the phase stability of ZrO2 nanoparticles is of major importance in the development of new ZrO2-based nanotechnologies. Because of the fact that in nanoparticles the surface accounts for a larger fraction of the total atoms, the relative phase stability can be controlled throughout the surface composition, which can be toned by surface excess of one of the components of the system., The objective of this work is to delineate a relationship between surface excess (or solid solution) of MgO relative to ZrO2 and the polymorphic stability of (ZrO2)(1-x) - (MgO), nanopowders, where 0.0 <= x <= 0.6. The nanopowders were prepared by a liquid precursor method at 500 degrees C and characterized by N-2 adsorption (BET), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and Raman spectroscopy. For pure ZrO2 samples, both tetragonal and monoclinic polymorphs were detected, as expected considering the literature. For MgO molar fractions varying from 0.05 to 0.10, extensive solid solution could not be detected, and a ZrO2 surface energy reduction, caused by Mg surface excess detected by XPS, promoted tetragonal polymorph thermodynamic stabilization with relation to monoclinic. For MgO molar fractions higher than 0.10 and up to 0.40, Mg solid solution could be detected and induced cubic phase stabilization. MgO periclase was observed only at x = 0.6. A discussion based on the relationship between the surface excess, surface energy, and polymorph stability is presented.
Resumo:
The development of structure perpendicular to and in the plane of the interface has been studied for mesoporous silicate films self-assembled at the air/water interface. The use of constrained X-ray and neutron specular reflectometry has enabled a detailed study of the structural development perpendicular to the interface during the pre-growth phase. Off-specular neutron reflectometry and grazing incidence X-ray diffraction has enabled the in-plane structure to be probed with excellent time resolution. The growth mechanism under the surfactant to silicate source ratios used in this work is clearly due to the self-assembly of micellar and molecular species at the air/liquid interface, resulting in the formation of a planar mesoporous film that is tens of microns thick. (C) 2003 Elsevier Science B.V. All rights reserved.