956 resultados para B. Constitutive behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stretch blow moulding (SBM) process is the main method for the mass production of PET containers. And understanding the constitutive behaviour of PET during this process is critical for designing the optimum product and process. However due to its nonlinear viscoelastic behaviour, the behaviour of PET is highly sensitive to its thermomechanical history making the task of modelling its constitutive behaviour complex. This means that the constitutive model will be useful only if it is known to be valid under the actual conditions of interest to the SBM process. The aim of this work was to develop a new material characterization method providing new data for the deformation behaviour of PET relevant to the SBM process. In order to achieve this goal, a reliable and robust characterization method was developed based on an instrumented stretch rod and a digital image correlation system to determine the stress-strain relationship of material in deforming preforms during free stretch-blow tests. The effect of preform temperature and air mass flow rate on the deformation behaviour of PET was also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dilatational plastic constitutive equation presented in this paper is proved to be in a form of generality. Based on this equation, the constitutive behaviour of materials at the moment of bifurcation is demonstrated to follow a loading path with the response as "soft" as possible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cystatins form a large family of cysteine protease inhibitors found in a wide arrange of organisms. Studies have indicated that mammalian cystatins play important roles under both physiological and pathological conditions. However, much less is known about fish cystatins. In this report, we described the identification and analysis of a cystatin B homologue, SmCytB, from turbot Scophthalmus maximus. The open reading frame of SmCytB is 300 bp, which encodes a 99-residue protein that shares high levels of sequence identities with the cystatin B of a number of fish species and contains the conserved cysteine protease inhibitor motif of cystatin B. Constitutive expression of SmCytB is high in muscle, brain, heart and liver, and low in spleen. blood, gill and kidney. Bacterial infection upregulates SmCytB expression in kidney, spleen, liver and brain but not in muscle or heart. Functional analysis showed that recombinant SmCytB purified from Escherichia colt exhibits apparent cysteine protease inhibitor activity. Transient overexpression of SmCytB in head kidney macrophages enhances macrophage bactericidal activity probably through a nitric oxide-independent mechanism. These results indicate that SmCytB is involved in the immune defense of turbot against bacterial infection. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number De(ID) = t(r)/t(i) is proposed to characterize the rate effect in BMGs, where t(r) is the structural relaxing characteristic time of BMGs under shear load, t(i) is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a level set method is developed for simulating the motion of a fluid particle rising in non-Newtonian fluids described by generalized Newtonian as well as viscoelastic model fluids. As the shear-thinning model we use a Carreau-Yasuda model, and the viscoelastic effect can be modeled with Oldroyd-B constitutive equations. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The level set method is implemented to compute the motion of a bubble in a Newtonian fluid as one of typical examples for validation, and the computational results are in good agreement with the reported experimental data.The level set method is also applied for simulating a Newtonian drop rising in Carreau-Yasuda and Oldroyd-B fluids.Numerical results including noticeably negative wake behind the drop and viscosity field are obtained, and compare satisfactorily with the known literature data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.