950 resultados para B-value


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last 10 years, diffusion-weighted imaging (DWI) has become an important tool to investigate white matter (WM) anomalies in schizophrenia. Despite technological improvement and the exponential use of this technique, discrepancies remain and little is known about optimal parameters to apply for diffusion weighting during image acquisition. Specifically, high b-value diffusion-weighted imaging known to be more sensitive to slow diffusion is not widely used, even though subtle myelin alterations as thought to happen in schizophrenia are likely to affect slow-diffusing protons. Schizophrenia patients and healthy controls were scanned with a high b-value (4000s/mm(2)) protocol. Apparent diffusion coefficient (ADC) measures turned out to be very sensitive in detecting differences between schizophrenia patients and healthy volunteers even in a relatively small sample. We speculate that this is related to the sensitivity of high b-value imaging to the slow-diffusing compartment believed to reflect mainly the intra-axonal and myelin bound water pool. We also compared these results to a low b-value imaging experiment performed on the same population in the same scanning session. Even though the acquisition protocols are not strictly comparable, we noticed important differences in sensitivities in the favor of high b-value imaging, warranting further exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To determine how the ADC value of parotid glands is influenced by the choice of b-values. MATERIALS AND METHODS: In eight healthy volunteers, diffusion-weighted echo-planar imaging (DW-EPI) was performed on a 1.5 T system, with b-values (in seconds/mm2) of 0, 50, 100, 150, 200, 250, 300, 500, 750, and 1000. ADC values were calculated by two alternative methods (exponential vs. logarithmic fit) from five different sets of b-values: (A) all b-values; (B) b=0, 50, and 100; (C) b=0 and 750; (D) b=0, 500, and 1000; and (E) b=500, 750, and 1000. RESULTS: The mean ADC values for the different settings were (in 10(-3) mm2/second, exponential fit): (A) 0.732+/-0.019, (B) 2.074+/-0.084, (C) 0.947+/-0.020, (D) 0.890+/-0.023, and (E) 0.581+/-0.021. ADC values were significantly (P <0.001) different for all pairwise comparisons of settings (A-E) of b-values, except for A vs. D (P=0.172) and C vs. D (P=0.380). The ADC(B) was significantly higher than ADC(C) or ADC(D), which was significantly higher than ADC(E). ADC values from exponential vs. logarithmic fit (P=0.542), as well as left vs. right parotid gland (P=0.962), were indistinguishable. CONCLUSION: The ADC values calculated from low b-value settings were significantly higher than those calculated from high b-value settings. These results suggest that not only true diffusion but also perfusion and saliva flow may contribute to the ADC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: To investigate the use of diffusion weighted magnetic resonance imaging (DWI) and the apparent diffusion coefficient (ADC) values in the diagnosis of hemangioma. Materials and methods: The study population consisted of 72 patients with liver masses larger than 1 cm (72 focal lesions). DWI examination with a b value of 600 s/mm2 was carried out for all patients. After DWI examination, an ADC map was created and ADC values were measured for 72 liver masses and normal liver tissue (control group). The average ADC values of normal liver tissue and focal liver lesions, the “cut-off” ADC values, and the diagnostic sensitivity and specificity of the ADC map in diagnosing hemangioma, benign and malignant lesions were researched. Results: Of the 72 liver masses, 51 were benign and 21 were malignant. Benign lesions comprised 38 hemangiomas and 13 simple cysts. Malignant lesions comprised 9 hepatocellular carcinomas, and 12 metastases. The highest ADC values were measured for cysts (3.782±0.53×10-3 mm2/s) and hemangiomas (2.705±0.63×10-3 mm2/s). The average ADC value of hemangiomas was significantly higher than malignant lesions and the normal control group (p<0.001). The average ADC value of cysts were significantly higher when compared to hemangiomas and normal control group (p<0.001). To distinguish hemangiomas from malignant liver lesions, the “cut-off” ADC value of 1.800×10-3 mm2/s had a sensitivity of 97.4% and a specificity of 90.9%. To distinguish hemangioma from normal liver parenchyma the “cut-off” value of 1.858×10-3 mm2/s had a sensitivity of 97.4% and a specificity of 95.7%. To distinguish benign liver lesions from malignant liver lesions the “cut-off” value of 1.800×10-3 mm2/s had a sensitivity of 96.1% and a specificity of 90.0%. Conclusion: DWI and quantitative measurement of ADC values can be used in differential diagnosis of benign and malignant liver lesions and also in the diagnosis and differentiation of hemangiomas. When dynamic examination cannot distinguish cases with vascular metastasis and lesions from hemangioma, DWI and ADC values can be useful in the primary diagnosis and differential diagnosis. The technique does not require contrast material, so it can safely be used in patients with renal failure. Keywords:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Color, pH, shear force, water-holding capacity, chemical composition, cholesterol content, and fatty acid profile from conventional, free-range and alternative broiler breast meat were determined in order to evaluate differences in the quality of broiler meat produced under different systems. Broilers reared in a conventional system had the highest lipid content (1.3%) but lower proportions of polyunsaturated (17.3%) and omega-3 fatty acids (0.3%) (p<0.05) compared to free-range and alternative broilers. On the other hand, free-range broilers had a lower cholesterol content (48.6 mg center dot 100 g(-1)) and lower pH (5.7 1) while broilers raised in an alternative system had a higher shear force (2.33 kgf) and lower yellowness value (b* value = 3.15) when compared to the other rearing systems (p<0.05).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation to Obtain the Degree of Master in Biomedical Engineering

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.