998 resultados para Axon Growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El desarrollo y funcionamiento del sistema nervioso dependen de la formación de circuitos neuronales específicos y de programas intrínsecos y extrínsecos que actúan como moduladores del desarrollo neuronal. Inicialmente, los neuroblastos "sensan" a través de receptores específicos, la presencia en el medio de factores de crecimiento, como neurotrofinas clásicas (BDNF, NGF, etc), IGF-1, factores Wnts, que regulan la diferenciación neuronal, polarización, migración, etc. Hasta hace pocos años, las funciones específicas de los diferentes sistemas de factor de crecimiento-receptor en el establecimiento de polaridad y la regulación del crecimiento axonal eran mayormente desconocidas. Más recientemente, trabajos de nuestro y otros grupos de investigación han aportado significativamente al conocimiento de los mecanismos que involucran los sistemas IGF-1-receptor de IGF-1, BDNF-TrkB y NGF-TrkA sobre el desarrollo de polaridad neuronal. Sin embargo, si bien se conoce que los factores de crecimiento Wnt cumplen un rol crucial en eventos que ocurren durante la maduración neuronal (dendritogénesis, sinaptogénesis) poco se sabe sobre los mecanismos por los cuales estos factores regularían el establecimiento inicial de polaridad y el crecimiento axonal. Los factores Wnt como así también su primer efector intracelular Dishevelled (DVL) y sus cascadas de señalización participan de procesos como neurogénesis, guiado axonal, desarrollo dendrítico y formación y mantenimiento de sinápsis. Por estas razones, para el desarrollo del presente proyecto planeamos estudiar los efectos de los factores Wnts, su receptor Frizzled (Fz) y su efector DVL sobre el establecimiento de polaridad y la regulación del crecimiento axonal. También compararemos los efectos de los factores Wnt con los de IGF-1 (el único factor de crecimiento conocido esencial para el establecimiento de polaridad). Finalmente, intentaremos determinar cuál o cuáles de las cascadas intracelulares de señalización activadas por los Wnts están involucradas en sus efectos axogénicos. La metodología a utilizar se basará en el empleo de cultivos primarios de neuronas de hipocampo de embriones de rata de 18 días de gestación, los que serán expuestos a los factores Wnt y/o IGF-1. Se diseñarán experimentos tendientes a evaluar los efectos de dichos factores durante los diferentes estadíos de diferenciación neuronal que se analizarán por microscopía de fluorescencia confocal. Al mismo tiempo se realizarán ensayos de subfraccionamiento que permitan purificar conos de crecimiento aislados en los que se evaluará el rol local de Wnt y sus efectores sobre la fosforilación de quinasas que median la adición local de membrana y elongación axonal. Se examiná el rol de DVL sobre la especificación axonal a través de la expresión epistática en neuronas no diferenciadas como así también se bloqueará su expresión a tavés del uso de siRNA o cDNAs que actúen como dominantes negativas. Finalmente, se examinará una posible "transactivación" por IGF-1 o Wnts de sus receptores o primeros efectores intracelulares específicos, IRS-1- PI3K para IGF-1 y Dishevelled para Wnts. Para ello, se diseñarán experimentos en los que se utilizarán inhibidores farmacológicos específicos y se realizan ensayos de fosforilación en conos de crecimiento aislados y en cultivos neuronales. Los resultados serán cuantificados y sometidos softwares estadísticos adecuados.El desarrollo de estos experimentos nos permitirá examinar posibles paralelismos entre la activación del sistema Wnt-Frizzled-Dishevelled y del sistema IGF-1-Receptor de IGF-1-PI3K, el único sistema factor de crecimiento-receptor conocido esencial para el establecimiento de la polaridad neuronal y así poder lograr un acercamiento al/los posible mecanismo/s que regula/n la diferenciación neuronal y el crecimiento axonal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tyrosine phosphorylation of ß-catenin, a component of adhesion complexes and the Wnt pathway, affects cell adhesion, migration and gene transcription. By reducing ßcatenin availability using shRNA-mediated gene silencing or expression of intracellular N-cadherin, we show that ß-catenin is required for axon growth downstream of Brain Derived Neurotrophic Factor (BDNF) and Hepatocyte Growth Factor (HGF) signalling. We demonstrate that receptor tyrosine kinases (RTK) Trk and Met interact with and phosphorylate ß-catenin. Neurotrophins (NT) stimulation of Trk receptors results in phosphorylation of ß-catenin at residue Y654 and increased axon growth and branching. Conversely, pharmacological inhibition of Trk or a Y654F mutant blocks these effects. ß-catenin phospho(P)-Y654 colocalizes with the cytoskeleton at growth cones. However, HGF that also increases axon growth and branching, induces ß-catenin phosphorylation at Y142 and a nuclear localization. Interestingly, dominant negative ΔN-TCF4 abolishes the effects of HGF in axon growth and branching, but not of NT. We conclude that NT and HGF signalling differentially phosphorylate ß-catenin, targeting ß-catenin to distinct compartments to regulate axon morphogenesis by TCF4-transcription-dependent and independent mechanisms. These results place ß-catenin downstream of growth factor/RTK signalling in axon differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purine nucleoside inosine has been shown to induce axon outgrowth from primary neurons in culture through a direct intracellular mechanism. For this study, we investigated the effects of inosine in vivo by examining whether it would stimulate axon growth after a unilateral transection of the corticospinal tract. Inosine applied with a minipump to the rat sensorimotor cortex stimulated intact pyramidal cells to undergo extensive sprouting of their axons into the denervated spinal cord white matter and adjacent neuropil. Axon growth was visualized by anterograde tracing with biotinylated dextran amine and by immunohistochemistry with antibodies to GAP-43. Thus, inosine, a naturally occurring metabolite without known side effects, might help to restore essential circuitry after injury to the central nervous system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains, (C) 2000 Academic Press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory neuroepithelium is characterised by the mosaic distribution of primary olfactory neurons that express different odorant receptors and cell surface glycoconjugates. Carbohydrates are believed to form a glycocode that mediates sorting out and fasciculation of primary olfactory axons through interactions with carbohydrate-binding proteins such as galectin-1. In the present study, we describe in detail the expression pattern of galectin-1 in the developing and adult rat olfactory system. We demonstrate that galectin-1 is expressed by olfactory ensheathing cells both in olfactory nerve and within the nerve fibre layer of the olfactory bulb of the embryonic and adult rat. In the adult rat, galectin-1 was preferentially expressed by olfactory ensheathing cells in the nerve fibre layer of the ventromedial and lateral surfaces of the olfactory bulb. Galectin-1 was also expressed by subsets of periglomerular cells and granule cells, particularly in the ventromedial region of the olfactory bulb. In adult rat, the galectin-1 ligand, N-acetyl-lactosamine, was expressed by primary olfactory axons that terminated in glomeruli present in the ventromedial and lateral olfactory bulb. These results suggest that expression of galectin-1 may provide a mechanism for the sorting of subpopulations of axons in the nerve fibre layer of the olfactory bulb during development as well as play a role in the postnatal maintenance of specific glomerular connections. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory nervous system is responsible for the detection of odors. Primary sensory olfactory neurons are located in a neuroepithelial sheet lining the nasal cavity. The axons from these neurons converge on to discrete loci or glomeruli in the olfactory bulb. Each glomerulus consists of the termination of thousands of primary axons on the dendrites of second-order olfactory neurons. What are the molecular mechanisms which guide growing olfactory axons to select sites in the olfactory bulb? We have shown that subpopulations of these axons differentially express cell surface carbohydrates and that these different subpopulations target and terminate in particular regions of the olfactory bulb. Interestingly, the olfactory neurons and glial components in the olfactory pathway between the nose and brain express galectin-1. By using in vitro assays of neurite outgrowth we found that both galectin-1 and it's ligands were capable of specifically stimulating neurite elongation. Examination of the olfactory system in galectin-1 null mutants revealed that a subpopulation of axons failed to navigate to their target site in the olfactory bulb. This is the first phenotypic effect observed in galectin-1 null mutants and indicates that galectin-1 has a role in the growth and/or guidance of a subpopulation of axons in the olfactory system during development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although N-CAM has previously been implicated in the growth and fasciculation of axons, the development of axon tracts in transgenic mice with a targeted deletion of the 180-kD isoform of the neural cell adhesion molecule (N-CAM-180) appears grossly normal in comparison to wild-type mice. We examined the organization of the olfactory nerve projection from the olfactory neuroepithelium to glomeruli in the olfactory bulb of postnatal N-CAM-180 null mutant mice. Immunostaining for olfactory marker protein revealed the normal presence of fully mature primary olfactory neurons within the olfactory neuroepithelium of mutant mice. The axons of these neurons form an olfactory nerve, enter the nerve fiber layer of the olfactory bulb, and terminate in olfactory glomeruli as in wild-type control animals. The olfactory bulb is smaller and the nerve fiber layer is relatively thicker in mutants than in wild-type mice. Previous studies have revealed that the plant lectin Dolichos biflorus agglutinin (DBA) clearly stains the perikarya and axons of a subpopulation of primary olfactory neurons. Thus, DBA staining enabled the morphology of the olfactory nerve pathway to be examined at higher resolution in both control and mutant animals. Despite a normal spatial pattern of DBA-stained neurons within the nasal cavity, there was a distorted axonal projection of these neurons onto the surface of the olfactory bulb in N-CAM-180 null mutants. In particular, DBA-stained axons formed fewer and smaller glomeruli in the olfactory bulbs of mutants in comparison to wild-type mice. Many primary olfactory axons failed to exit the nerve fiber layer and contribute to glomerular formation. These results indicate that N-CAM-180 plays an important role in the growth and fasciculation of primary olfactory axons and is essential for normal development of olfactory glomeruli. (C) 1997 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The functional activity of the neural cell adhesion molecule N-CAM can be modulated by posttranslational modifications such as glycosylation. For instance, the long polysialic acid side chains of N-CAM alter the adhesion properties of the protein backbone. In the present study, we identified two novel carbohydrates present on N-CAM, NOC-3 and NOC-4. Both carbohydrates were detected on N-CAM glycoforms expressed by subpopulations of primary sensory olfactory neurons in the rat olfactory system. Based on the expression of NOC-3 and NOC-4 and the olfactory marker protein (OMP), four independent subpopulations of primary sensory olfactory neurons were characterized. These neurons expressed: both NOC-3 and NOC-4 but not OMP; both NOC-4 and OMP but not NOC-3; NOC-3, NOC-4, and OMP together; and OMP alone. The NOC-3- and NOC-4-expressing neurons were widely dispersed in the olfactory neuroepithelium lining the nasal cavity. The axons of NOC-4 expressing neurons innervated all glomeruli in the olfactory bulb, whereas the NOC-3 expressing axons terminated in a discrete subset of glomeruli scattered throughout the whole olfactory bulb. We propose that both NOC-3 and NOC-4 are part of a chemical code of olfactory neurons which is used in establishing the topography of connections between the olfactory neuroepithelium and the olfactory bulb. (C) 1997 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.