84 resultados para Axles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las máquinas ofrecen la ventaja mecánica de que permiten utilizar menos fuerza para hacer la misma cantidad de trabajo. El objetivo de este recurso es llamar la atención de los alumnos de primaria de la importancia que tienen los objetos que nos rodean en los principios de la física básica y animarlos a explorar su entorno en busca de estos principios. Introduce a los más jóvenes, de una forma sencilla y clara, en el conocimiento de las máquinas simples proporcionando información básica sobre las ruedas y los ejes describiendo los diferentes tipos, usos, beneficios y la forma en cómo las utilizamos en nuestra vida cotidiana. Tiene glosario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern trains with different axle configurations, speeds and loads are used in railway networks. As a result, one of the most important questions of the mangers involved in bridge managements systems (BMS) is how these changes affect the structural behavior of the critical components of the railway bridges. Although researchers have conducted, many investigations on the dynamic effects of the moving loads on bridges, the influence of the changes in the speed of the train on the demand by capacity ratios of the different critical components of the bridge have not yet been properly studied. This study is important, because different components with different capacities and roles for carrying loads in the structure may be affected differently. To investigate the above phenomenon in this research, a structural model of a simply supported bridge is developed. It will be verified that the dynamic behavior of this bridge is similar to a group of railway bridges in Australia. Demand by capacity ratios of the critical components of the bridge, when it is subjected to a train load with different speeds will be calculated. The results show that the effect of increase or decrease of speed should not be underestimated. The outcome is very significant as it is contrary to what is currently expected, i.e. by reducing the speed of the train, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessing the road damaging potential of heavy vehicles is becoming an increasingly important issue. In this paper, current vehicle regulations and possible future alternatives are reviewed, and are categorized as tests on individual axles and whole vehicles, and 'direct' and 'indirect' tests. Whole vehicle methods of assessing road damaging potential accurately are then discussed. Direct methods are investigated (focussing on using a force measuring mat), and drawbacks are highlighted. Indirect methods using a transient input applied to individual axles are then examined. Results indicate that if non-linearities are accounted for properly, indirect methods of assessing whole vehicle road damaging potential could offer the required accuracy for a possible future test procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The span of the bridge was assumed as 100 feet. The type of bridge used is the timber Howe Truss. The height of truss was taken as 20 feet between center lines of top and bottom chords. The width was taken as 18 feet center to center of trusses. The truss was divided up into five panels 20 feet long.

It was designed according to the "General Specifications for Steel Highway Bridges" by Ketchum. For the live load for the floor and its supports, a load of 80 pounds per square foot of total floor surface or a 15 ton traction engine with axles 10 feet centers and 6 feet gage, two thirds of load to be carried by rear axles.

For the truss a load of 75 pounds per square foot of floor surface.

For the wind load the bottom lateral bracing is to be designed to resist a lateral wind load of 300 pounds per foot of span; 150 pounds of this to be treated as a moving load.

The top lateral bracing is to be designed to resist a lateral wind force of 150 pounds per foot of span.

The timber to be used in the bridge is to be Douglas fir.

The unit stresses used for timber are those of the American Railway Engineering Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An articulated lorry was instrumented in order to measure its performance in straight-line braking. The trailer was fitted with two interchangeable tandem axle sub-chassis, one with an air suspension and the other with a steel monoleaf four-spring suspension. The brakes were only applied to the trailer axles, which were fitted with anti-lock braking systems (ABS), with the brake torque controlled in response to anticipated locking of the leading axle of the tandem. The vehicle with the air suspension was observed to have significantly better braking performance than the steel suspension, and to generate smaller inter-axle load transfer and smaller vertical dynamic tyre forces. Computer models of the two suspensions were developed, including their brakes and anti-lock systems. The models were found to reproduce most of the important features of the experimental results. It was concluded that the poor braking performance of the steel four-spring suspension was mainly due to interaction between the ABS and inter-axle load transfer effects. The effect of road roughness was investigated and it was found that vehicle stopping distances can increase significantly with increasing road roughness. Two alternative anti-lock braking control strategies were simulated. It was found that independent sensing and actuation of the ABS system on each wheel greatly reduced the difference in stopping distances between the air and steel suspensions. A control strategy based on limiting wheel slip was least susceptible to the effects of road roughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-speed path-following controller for long combination vehicles (LCVs) was designed and implemented on a test vehicle consisting of a rigid truck towing a dolly and a semitrailer. The vehicle was driven through a 3.5 m wide lane change maneuver at 80 km/h. The axles of the dolly and trailer were steered actively by electrically-controlled hydraulic actuators. Substantial performance benefits were recorded compared with the unsteered vehicle. For the best controller weightings, performance improvements relative to unsteered case were: lateral tracking error 75% reduction, rearward amplification (RA) of lateral acceleration 18% reduction, and RA of yaw rate 37% reduction. This represents a substantial improvement in stability margins. The system was found to work well in conjunction with the braking-based stability control system of the towing vehicle with no negative interaction effects being observed. In all cases, the stability control system and the steering system improved the yaw stability of the combination. © 2014 by ASME.