6 resultados para Axiomatisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an axiomatisation of the Timed Interval Calculus, a set-theoretic notation for expressing properties of time intervals. We implement the axiomatisation in the Ergo theorem prover in order to allow the machine-checked proof of laws for reasoning about predicates expressed using interval operators. These laws can be then used in the machine-assisted verification of real-time applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of the logic was not previously available. However, a breakthrough by Hodkinson et al., identifying a finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate proof techniques for this monodic fragment.In this paper, we modify and extend the clausal temporal resolution technique, originally developed for propositional temporal logics, to enable its use in such monodic fragments. We develop a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus for formulae in this form. Not only is this clausal resolution technique useful as a practical proof technique for certain monodic classes, but the use of this approach provides us with increased understanding of the monodic fragment. In particular, we here show how several features of monodic FOTL can be established as corollaries of the completeness result for the clausal temporal resolution method. These include definitions of new decidable monodic classes, simplification of existing monodic classes by reductions, and completeness of clausal temporal resolution in the case of monodic logics with expanding domains, a case with much significance in both theory and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.