84 resultados para Avicennia germinans
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
The mangrove is a coastal ecosystem of the big ecological importance, showing high fragility front by natural process and the human interventions in the coastal zone. This research has objective to analyses the relation between mangrove species distribution and geochemical parameters variation of the water and soil in Apodi/Mossoro estuary, located in the Rio Grande do Norte state north coastline. The results were obtained from floristic and structural analysis of the vegetation and Quick Bird satellite images interpretation (collected in 2006 year), manipulated with ENVI 4.3 and ArcGIS 9.2 software s. This estuary was characterized by to presents a gradient of the salinity around 40 kilometers extension, finding amount between 50 and 90 g/l-1. Will be identified the formation of the mix vegetation formation in the estuary mount, where the water salinity no show express wide variation on seawater (36 g/l-1), finding species: Rhizophora mangle L., Laguncularia racemosa (L.) C. F. Gaertn, Avicennia schaueriana Stap. & Leechman e Avicennia germinans L. Along of the estuary, have a streak formation of the vegetation composed by Avicennia spp. and L. racemosa. In high estuary, where the salinities value stay above 60 g/l-1, only A. germinans predominate in dwarf form. In this sense, the salinity is as a limiting factor of stress on the mangrove vegetation as it enters the estuary, this parameter should be taken into account when drawing up management plans and environmental restoration in the estuary in question
Resumo:
O objetivo do estudo foi avaliar a influência de diferentes níveis de sombreamento sobre o desenvolvimento de mudas das espécies arbóreas de mangue Avicennia germinans (L.) Stearn., Rhizophora mangle L. e Laguncularia racemosa (L.) Gaertn. f. O experimento foi conduzido na comunidade de Tamatateua, na península de Ajuruteua, município de Bragança. Para a produção das mudas, os propágulos das espécies arbóreas de mangue foram semeados em embalagens de polietileno (17 x 27 cm), preenchidas com substrato típico de manguezal. As mudas das três espécies foram testadas a pleno sol, 30% e 60% de sombreamento em delineamento experimental inteiramente casualizado em esquema fatorial (3 x 3) x 3 (3 espécies arbóreas e 3 níveis de sombreamento). Após as plantas atingirem a idade de nove meses, retiraram-se amostras de oito mudas por repetição de cada tratamento. As variáveis avaliadas foram: altura da parte aérea, diâmetro do coleto, massa da parte aérea, massa seca do caule, matéria seca das raízes e matéria seca total e índices morfológicos. O crescimento das mudas de R. mangle ocorreu em todos os níveis de luminosidade. As mudas de A. germinans apresentaram maior crescimento a pleno sol e a 30% de sombreamento. Já as mudas de L. racemosa foram tolerantes a 30% e 60% de sombra, mas se desenvolveram melhor a pleno sol.
Resumo:
Na zona costeira, sedimentos, água e organismos interagem intensamente. Nas costas equatoriais dominadas por maré os manguezais são abundantes. Estas áreas são conhecidas por sua importância ecológica. No caso dos manguezais da costa atlântica da América do Sul o caranguejo-uçá Ucides cordatus (Linnaeus, 1763) se destaca por sua relevância ecológica e econômica, sendo que altas densidades deste organismo são encontradas na zona costeira amazônica. O presente estudo investiga a distribuição de sedimentos nos manguezais de Bragança (costa Amazônica, Brasil) e suas correlações com a vegetação e a distribuição do caranguejo-uçá. Quarenta e sete amostras de sedimento foram avaliadas, assim como caranguejos de 8 destas áreas foram coletados, onde o tipo dominante de vegetação foi também identificado. Os resultados demonstram que os sedimentos superficiais, assim como no extrato 0,8 a 1 m de profundidade, na área são principalmente compostos por silte (59%), incluindo em média 21% de areia e 20% de argila. O tipo de vegetação predominante foi significativamente correlacionado com a abundância e tamanho/peso dos caranguejos. As características sedimentares também foram substancialmente diferentes dependendo da vegetação. Áreas dominadas por Avicennia germinans tiveram mais areia e argila que as áreas dominadas por Rizophora mangle, onde a fração silte prevalece grandemente e os caranguejos eram significativamente maiores e mais abundantes. Os resultados demonstraram que sedimentos, invertebrados bentônicos e vegetação estão intimamente relacionados nos manguezais e devem ser estudados de maneira integrada.
Resumo:
The dynamics, over the last 7500 years, of a mangrove at Marajo Island in northern Brazil were studied by pollen and sedimentary facies analyses using sediment cores. This island, located at the mouth of the Amazon River. is influenced by riverine inflow combined with tidal fluctuations of the equatorial Atlantic Ocean. Herbaceous vegetation intermingled with rainforest dominates the central area of the island, while varzea is the main vegetation type along the littoral. In particular, the modem northeastern coastal zone is covered by a mosaic of dense rainforest, herbaceous vegetation, mangroves, varzea, and restinga. The integration of pollen data and fades descriptions indicates a tidal mud flat colonized by mangroves in the interior of Marajo Island between similar to 7500 cal yr BP and similar to 3200 cal yr BP. During the late Holocene, mangroves retracted to a small area (100-700 m in width) along the northeastern coastal plain. Mangrove expansion during the early and mid Holocene was likely caused by the post-glacial sea-level rise which, combined with tectonic subsidence, led to a rise in tidal water salinity. Salinity must have further increased due to low river discharge resulting from increased aridity during the early and mid Holocene. The shrinking of the area covered by mangrove vegetation during the late Holocene was likely caused by the increase in river discharge during the late Holocene, which has maintained relatively low tidal water salinity in Marajo Island. Tidal water salinity is relatively higher in the northeastern part of the island than in others, due to the southeast-northwest trending current along the littoral. The mixing of marine and riverine freshwater inflows has provided a refuge for mangroves in this area. The increase in flow energy during the last century is related to landward sand migration, which explains the current retraction of mangroves. These changes may indicate an increased exposure to tidal influence driven by the relative sea-level rise, either associated with global fluctuations or tectonic subsidence, and/or by an increase in river water discharge. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.
Resumo:
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.
Resumo:
Abstract Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.
Resumo:
Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.
Resumo:
Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.
Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest
Resumo:
1. Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2. Wood disks (8–10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3. A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4. Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ± 2% of dry weight), while Laguncularia racemosa had the lowest (10 ± 2%). Labile components decayed at rates of 0.37–23.71% month−1, while refractory components decayed at rates of 0.001–0.033% month−1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5. Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6. Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7. As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests.