960 resultados para Averaging Theorem


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, for the first time, a quenching result in a non-ideal system is rigorously obtained. In order to do this a new mechanical hypothesis is assumed, it means that the moment of inertia of the rotating parts of the energy source is big. From this is possible to use the Averaging Method. © 2012 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We prove a periodic averaging theorem for generalized ordinary differential equations and show that averaging theorems for ordinary differential equations with impulses and for dynamic equations on time scales follow easily from this general theorem. We also present a periodic averaging theorem for a large class of retarded equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.

Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.

Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report numerical results from a study of balance dynamics using a simple model of atmospheric motion that is designed to help address the question of why balance dynamics is so stable. The non-autonomous Hamiltonian model has a chaotic slow degree of freedom (representing vortical modes) coupled to one or two linear fast oscillators (representing inertia-gravity waves). The system is said to be balanced when the fast and slow degrees of freedom are separated. We find adiabatic invariants that drift slowly in time. This drift is consistent with a random-walk behaviour at a speed which qualitatively scales, even for modest time scale separations, as the upper bound given by Neishtadt’s and Nekhoroshev’s theorems. Moreover, a similar type of scaling is observed for solutions obtained using a singular perturbation (‘slaving’) technique in resonant cases where Nekhoroshev’s theorem does not apply. We present evidence that the smaller Lyapunov exponents of the system scale exponentially as well. The results suggest that the observed stability of nearly-slow motion is a consequence of the approximate adiabatic invariance of the fast motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: Primary 49N25, Secondary 49J24, 49J25.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.