897 resultados para Average heat transfer coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local shell side coefficient measurements in the end conpartments of a model shell and tube heat exchanger have been made using an electrochemical technique. Limited data are also reported far the second compartment. The end compartment average coefficients have been found to be smaller than reported data for a corresponding internal conpartment. The second compartment data. have been shown to lie between those for the end compartments and the reported internal compartment data. Experimental data are reported fcr two port types and two baffle orientations. with data for the case of an inlet compartment impingement baffle also being given . Port type is shown to have a small effect on compartment coefficients, these being largely unaffected. Likewise, the outlet compartment average coefficients are slightly snaller than those for the inlet compartment, with the distribution of individual tube coefficients being similar. Baffle orientation has been shown to have no effect on average coefficients, but the distribution of the data is substantially affected. The use of an impingement baffle in the inlet compartment lessens the efect of baffle orientation on distribution . Recommendations are made for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A heat transfer coefficient gauge has been built, obeying particular rules in order to ensure the relevance and accuracy of the collected information. The gauge body is made out of the same materials as the die casting die (H13). It is equipped with six thermocouples located at different depths in the body and with a sapphire light pipe. The light pipe is linked to an optic fibre, which is connected to a monochromatic pyrometer. Thermocouples and pyrometer measurements are recorded with a data logger. A high pressure die casting die was instrumented with one such gauge. A set of 150 castings was done and the data recorded. During the casting, some process parameters have been modified such as piston velocity, intensification pressure, delay before switch to the intensification stage, temperature of the alloy, etc.... The data was treated with an inverse method in order to transform temperature measurements into heat flux density and heat transfer coefficient plots. The piston velocity and the initial temperature of the die seem to be the process parameters that have the greatest influence on the heat transfer. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid–particle interaction and the impact of different heat transfer conditions on pyrolysis of biomass inside a 150 g/h fluidised bed reactor are modelled. Two different size biomass particles (350 µm and 550 µm in diameter) are injected into the fluidised bed. The different biomass particle sizes result in different heat transfer conditions. This is due to the fact that the 350 µm diameter particle is smaller than the sand particles of the reactor (440 µm), while the 550 µm one is larger. The bed-to-particle heat transfer for both cases is calculated according to the literature. Conductive heat transfer is assumed for the larger biomass particle (550 µm) inside the bed, while biomass–sand contacts for the smaller biomass particle (350 µm) were considered unimportant. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Biomass reaction kinetics is modelled according to the literature using a two-stage, semi-global model which takes into account secondary reactions. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of User Defined Function (UDF).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Reynolds number variation in a vertical double pipe counterflow heat exchanger due to the changes in viscosity can cause the change in flow regime, for instance, when heats up and cools down, it can convert from turbulent to laminar or inversely, that can have significant effect on heat transfer coefficient and pressure drop. Mainly, the range of transition phase has been studied in this study with the investigation of silica nanofluid dispersed in water in three different concentrations. The results have been compared with distilled water sample and showed a remarkable raise in heat transfer coefficient while pressure drop has been increased respectively, as well. Although pumping power has to go up at the same time and it is a drawback, heat transfer efficiency grows for diluted samples. On the other hand, for the most concentrated sample, effect of pressure drop dominates which leads to decline in the overall efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical and numerical solutions of a general problem related to the radially symmetric inward spherical solidification of a superheated melt have been studied in this paper. In the radiation-convection type boundary conditions, the heat transfer coefficient has been taken as time dependent which could be infinite, at time,t=0. This is necessary, for the initiation of instantaneous solidification of superheated melt, over its surface. The analytical solution consists of employing suitable fictitious initial temperatures and fictitious extensions of the original region occupied by the melt. The numerical solution consists of finite difference scheme in which the grid points move with the freezing front. The numerical scheme can handle with ease the density changes in the solid and liquid states and the shrinkage or expansions of volumes due to density changes. In the numerical results, obtained for the moving boundary and temperatures, the effects of several parameters such as latent heat, Boltzmann constant, density ratios, heat transfer coefficients, etc. have been shown. The correctness of numerical results has also been checked by satisfying the integral heat balance at every timestep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heat transfer coefficients for horizontally immersed tubes have been studied in model internally circulating fluidized bed (ICFB) and pilot ICFB incinerators. The characteristics in the ICFB were found to be significantly different from those in a bubbling bed. In ICFB, there is a flowing zone with high velocity, a heat exchange zone, and a moving zone with low velocity. The controllable heat transfer coefficients in ICFB strongly depend on the fluidized velocity in the flowing zone, and also the flow condition in the moving zone. The heat exchange process and suitable bed temperature can be well controlled according to this feature. Based on the results of experiments, a formulation for heat transfer coefficient has been developed. These results were applied to an external superheater of a CFB incinerator with a 450 degreesC steam outlet in a waste-to-energy pilot cogeneration plant of 12 MW in Jiaxing City, China.