867 resultados para Availability and efficiency
Resumo:
La comunitat bentònica dels ecosistemes fluvials processa una gran quantitat de la matèria orgànica que arriba als rius. L'origen de les entrades de material (autòctones o al·lòctones), la seva composició química i la seva quantitat (freqüència de les entrades i concentració assolida en el riu), determinen l'estructura de la comunitat bentònica autotròfica i heterotròfica, les seves relacions tròfiques i les seves interaccions potencials (competència, sinergisme). L'objectiu d'aquesta tesi és posar de manifest la utilització de la matèria orgànica dissolta (MOD) per part dels biofilms bacterians bentònics fluvials i determinar l'eficiència del sistema fluvial en l'ús dels diferents materials que hi circulen. Amb aquesta finalitat s'han portat a terme diversos experiments, tant de camp com de laboratori, per tal de conèixer els efectes de la disponibilitat de la matèria orgànica (quantitat) i la seva qualitat (composició química i biodegradabilitat) i els efectes deguts a l'augment de temperatura de l'aigua del riu.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
The current study was motivated by statements made by the Economic Strategies Committee that Singapore’s recent productivity levels in services were well below countries such as the US, Japan and Hong Kong. Massive employment of foreign workers was cited as the reason for poor productivity levels. To shed more light on Singapore’s falling productivity, a nonparametric Malmquist productivity index was employed which provides measures of productivity change, technical change and efficiency change. The findings reveal that growth in total factor productivity was attributed to technical change with no improvement in efficiency change. Such results suggest that gains from TFP were input-driven rather than from a ‘best-practice’ approach such as improvements in operations or better resource allocation.
Resumo:
The current study was motivated by statements made by the Economic Strategies Committee that Singapore’s recent productivity levels in services were well below countries such as the US, Japan and Hong Kong. Massive employment of foreign workers was cited as the reason for poor productivity levels. To shed more light on Singapore’s falling productivity, a nonparametric Malmquist productivity index was employed which provides measures of productivity change, technical change and efficiency change. The findings reveal that growth in Total Factor Productivity (TFP) was attributed to technical change with no improvement in efficiency change. Such results suggest that gains from TFP were input-driven rather than from a ‘best-practice’ approach such as improvements in operations or better resource allocation.
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
As part of a wider study to develop an ecosystem-health monitoring program for wadeable streams of south-eastern Queensland, Australia, comparisons were made regarding the accuracy, precision and relative efficiency of single-pass backpack electrofishing and multiple-pass electrofishing plus supplementary seine netting to quantify fish assemblage attributes at two spatial scales (within discrete mesohabitat units and within stream reaches consisting of multiple mesohabitat units). The results demonstrate that multiple-pass electrofishing plus seine netting provide more accurate and precise estimates of fish species richness, assemblage composition and species relative abundances in comparison to single-pass electrofishing alone, and that intensive sampling of three mesohabitat units (equivalent to a riffle-run-pool sequence) is a more efficient sampling strategy to estimate reach-scale assemblage attributes than less intensive sampling over larger spatial scales. This intensive sampling protocol was sufficiently sensitive that relatively small differences in assemblage attributes (<20%) could be detected with a high statistical power (1-β > 0.95) and that relatively few stream reaches (<4) need be sampled to accurately estimate assemblage attributes close to the true population means. The merits and potential drawbacks of the intensive sampling strategy are discussed, and it is deemed to be suitable for a range of monitoring and bioassessment objectives.
Resumo:
Background: Traditionally communicable diseases were the main causes of burden in developing countries like Nepal. In recent years non-communicable diseases (NCDs), mainly cardiovascular diseases (CVDs), cancer, chronic respiratory diseases and diabetes mellitus, impose a larger disease burden compared to communicable diseases. Most elements of health and medicine policies in Nepal are still focused on communicable diseases. There is limited evidence about NCDs and NCD medicines in Nepal. Aim: To explore the gap between the burden of NCDs and the availability and affordability of NCD medicines in Nepal. Methods: Biomedical databases like Medline, Scopus, Web of Science and other online sources (including Global Burden of Diseases data) were searched for data on the burden of NCDs in term of Disability Adjusted Life Years (DALYs). The Essential Medicines List (EML) of Nepal was compared with World Health Organisation (EML) for inclusion of NCD medicines. Results: In Nepal, NCDs caused nearly 45% of the total 10.5 million DALYs in 2010. CVDs (15.2%), were the leading cause of NCDs burden followed by chronic respiratory diseases (14.7%), cancer (7.3%) and diabetes mellitus (3.2%). One hospital based national survey found that 37% of hospitalised patients had NCDs. Among them, 38% had heart disease followed by COPD (33%) , and diabetes (10%). Most (23 out of 28) non-cancer NCD medicines recommended in WHO-EML were present in Nepal's EML, theoretically indicating good availability. However, it is difficult to say whether they are accessible and affordable due to the lack of adequate data on access and pricing. Conclusion: This study gives some insight into the burden of NCDs. Although NCD medicines are available in Nepal, further research is required to determine whether they are accessible and affordable to the general population.
Resumo:
This study measures the efficiencies incorporating waste generation using Japanese prefecture level data. We apply and compare several models using directional distance functions. There are wide variations in the efficiency scores between the two orientations, "input, desirable and undesirable output orientation" and "undesirable output orientation". However, the difference in abatement factor does not result in wide variations in the efficiency scores. Our results show that there are wide differences in the efficiency scores among prefectures. © 2012 Springer.
Resumo:
This thesis investigates how Open Government Data (OGD) concepts and practices might be implemented in the State of Qatar to achieve more transparent, effective and accountable government. The thesis concludes with recommendations as to how Qatar, as a developing country, might enhance the accessibility and usability of its OGD and implement successful and sustainable OGD systems and practices.