24 resultados para Autoregressions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop methods for performing filtering and smoothing in non-linear non-Gaussian dynamical models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. In particular, novel techniques are presented for generation of random realisations from the joint smoothing distribution and for MAP estimation of the state sequence. Realisations of the smoothing distribution are generated in a forward-backward procedure, while the MAP estimation procedure can be performed in a single forward pass of the Viterbi algorithm applied to a discretised version of the state space. An application to spectral estimation for time-varying autoregressions is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La causalité au sens de Granger est habituellement définie par la prévisibilité d'un vecteur de variables par un autre une période à l'avance. Récemment, Lutkepohl (1990) a proposé de définir la non-causalité entre deux variables (ou vecteurs) par la non-prévisibilité à tous les délais dans le futur. Lorsqu'on considère plus de deux vecteurs (ie. lorsque l'ensemble d'information contient les variables auxiliaires), ces deux notions ne sont pas équivalentes. Dans ce texte, nous généralisons d'abord les notions antérieures de causalités en considérant la causalité à un horizon donné h arbitraire, fini ou infini. Ensuite, nous dérivons des conditions nécessaires et suffisantes de non-causalité entre deux vecteurs de variables (à l'intérieur d'un plus grand vecteur) jusqu'à un horizon donné h. Les modèles considérés incluent les autoregressions vectorielles, possiblement d'ordre infini, et les modèles ARIMA multivariés. En particulier, nous donnons des conditions de séparabilité et de rang pour la non-causalité jusqu'à un horizon h, lesquelles sont relativement simples à vérifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent empirical evidence from vector autoregressions (VARs) suggests that public spending shocks increase (crowd in) private consumption. Standard general equilibrium models predict the opposite. We show that a standard real business cycle (RBC) model in which public spending is chosen optimally can rationalize the crowding-in effect documented in the VAR literature. When such a model is used as a data-generating process, a VAR estimated using the artificial data yields a positive consumption response to an increase in public spending, consistent with the empirical findings. This result holds regardless of whether private and public purchases are complements or substitutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta disertación busca estudiar los mecanismos de transmisión que vinculan el comportamiento de agentes y firmas con las asimetrías presentes en los ciclos económicos. Para lograr esto, se construyeron tres modelos DSGE. El en primer capítulo, el supuesto de función cuadrática simétrica de ajuste de la inversión fue removido, y el modelo canónico RBC fue reformulado suponiendo que des-invertir es más costoso que invertir una unidad de capital físico. En el segundo capítulo, la contribución más importante de esta disertación es presentada: la construcción de una función de utilidad general que anida aversión a la pérdida, aversión al riesgo y formación de hábitos, por medio de una función de transición suave. La razón para hacerlo así es el hecho de que los individuos son aversos a la pérdidad en recesiones, y son aversos al riesgo en auges. En el tercer capítulo, las asimetrías en los ciclos económicos son analizadas junto con ajuste asimétrico en precios y salarios en un contexto neokeynesiano, con el fin de encontrar una explicación teórica de la bien documentada asimetría presente en la Curva de Phillips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the forecasting of macroeconomic variables that are subject to revisions, using Bayesian vintage-based vector autoregressions. The prior incorporates the belief that, after the first few data releases, subsequent ones are likely to consist of revisions that are largely unpredictable. The Bayesian approach allows the joint modelling of the data revisions of more than one variable, while keeping the concomitant increase in parameter estimation uncertainty manageable. Our model provides markedly more accurate forecasts of post-revision values of inflation than do other models in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem por objetivo promover uma análise dos ciclos econômicos de Brasil, Argentina e Estados Unidos, dando ênfase às mudanças de regimes ocorridas ao longo das flutuações experimentadas por esses países. Estudos recentes sobre ciclos têm argumentado em favor de ciclos internacionais de negócios. Nesse sentido, em especial, o trabalho visa testar a hipótese de um ciclo comum que afetaria ambos os países. A metodologia utilizada é a dos modelos MS-VAR – Markov switching vector autoregressions. Especificações univariadas são estimadas para o período de 1900 a 2000 e os resultados comparados aos fatos estilizados de cada país. Posteriormente um modelo multivariado é formulado para abrigar a hipótese de um ciclo conjunto, visto como mudanças comuns no processo estocástico do crescimento desses países. Os resultados sugerem que as evidências em favor desse ciclo comum são pouco robustas. As correlações contemporâneas estimadas apresentam valores bastante modestos. Em particular, existem significativas diferenças nos ciclos de Brasil, Argentina e Estados Unidos, cada um deles com características próprias e comportamentos singulares.