987 resultados para Autonomous surface vehicle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the mission control and supervision system developed for the ROAZ Autonomous Surface Vehicle is presented. Complexity in mission requirements coupled with flexibility lead to the design of a modular hierarchical mission control system based on hybrid systems control. Monitoring and supervision control for a vehicle such as ROAZ mission is not an easy task using tools with low complexity and yet powerful enough. A set of tools were developed to perform both on board mission control and remote planning and supervision. “ROAZ- Mission Control” was developed to be used in support to bathymetric and security missions performed in river and at seas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International Lifesaving Congress 2007, La Coruna, Spain, December, 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and development of the swordfish autonomous surface vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5 m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a hybrid coordinated manoeuvre for docking an autonomous surface vehicle with an autonomous underwater vehicle. The control manoeuvre uses visual information to estimate the AUV relative position and attitude in relation to the ASV and steers the ASV in order to dock with the AUV. The AUV is assumed to be at surface with only a small fraction of its volume visible. The system implemented in the autonomous surface vehicle ROAZ, developed by LSA-ISEP to perform missions in river environment, test autonomous AUV docking capabilities and multiple AUV/ASV coordinated missions is presented. Information from a low cost embedded robotics vision system (LSAVision), along with inertial navigation sensors is fused in an extended Kalman filter and used to determine AUV relative position and orientation to the surface vehicle The real time vision processing system is described and results are presented in operational scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE Robótica 2007 - 7th Conference on Mobile Robots and Competitions, Paderne, Portugal 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of robotic vehicles for environmental modeling is discussed. This paper presents diverse results in autonomous marine missions with the ROAZ autonomous surface vehicle. The vehicle can perform autonomous missions while gathering marine data with high inertial and positioning precision. The underwater world is an, economical and environmental, asset that need new tools to study and preserve it. ROAZ is used in marine environment missions since it can sense and monitor the surface and underwater scenarios. Is equipped with a diverse set of sensors, cameras and underwater sonars that generate 3D environmental models. It is used for study the marine life and possible underwater wrecks that can pollute or be a danger to marine navigation. The 3D model and integration of multibeam and sidescan sonars represent a challenge in nowadays. Adding that it is important that robots can explore an area and make decisions based on their surroundings and goals. Regard that, autonomous robotic systems can relieve human beings of repetitive and dangerous tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented work focuses on the theoretical and practical aspects concerning the design and development of a formal method to build a mission control system for autonomous underwater vehicles bringing systematic design principles for the formal description of missions using Petri nets. The proposed methodology compounds Petri net building blocks within it to de_ne a mission plan for which it is proved that formal properties, such as reachability and reusability, hold as long as these same properties are also guaranteed by each Petri net building block. To simplify the de_nition of these Petri net blocks as well as their composition, a high level language called Mission Control Language has been developed. Moreover, a methodology to ensure coordination constraints for teams of multiple robots as well as the de_nition of an interface between the proposed system and an on-board planner able to plan/replan sequences of prede_ned mission plans is included as well. Results of experiments with several real underwater vehicles and simulations involving an autonomous surface craft and an autonomous underwater vehicles are presented to show the system's capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.