797 resultados para Autonomous decision-making
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.
Resumo:
The study investigated early childhood teacher decision making at the preschool level in the state of Victoria, Australia. Victorian teachers at the preschool level were in an interesting position in 2004. Unlike most other Australian states Victoria did not have a curriculum framework guiding educational content and pedagogy. Consequently, this study was able to take advantage of this situation and examine teacher decision making at a time when early childhood teachers were relatively autonomous in deciding curriculum content. The opportunity to study teacher decision making in this way has since passed, as Victorian preschool teachers are now regulated by newly introduced state and national curricula frameworks. To identify influences affecting teacher decision making three preschool teachers were interviewed and curricula related policies were analysed. The data were analysed using Fairclough’s critical discourse analysis (CDA) technique. Critical discourse analysis enabled a close analysis of influences on teacher decision making illustrating how discourse is legitimated, marginalised, and silenced in certain curricula practices. Critical theory was the underpinning framework used for the study and enabled taken-for-granted understandings to be uncovered within early childhood policies and teacher interviews. Key findings were that despite there not being a government-mandated curricula framework for Victorian preschool education in 2004, teachers were held accountable for their curricula practice. Yet as professionals, early childhood teachers were denied public acknowledgment of their expertise as they were almost invisible in policy. Subsequently, teachers’ authority as professionals with curricula knowledge was diminished. The study found that developmentally appropriate practice (DAP) was a dominant discourse influencing teacher decision making (TDM). It operated as legitimated discourse in the 2004 Victorian preschool context. Additionally, the study found that teacher directed practice was legitimated, marginalised, and silenced by teachers. The findings have implications for early childhood teacher decision making at the practice, research, and policy levels. Findings show that the dominance of the DAP discourse informing teacher decision making limits other ways of thinking and practising.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
Autonomous agents may encapsulate their principals' personal data attributes. These attributes may be disclosed to other agents during agent interactions, producing a loss of privacy. Thus, agents need self-disclosure decision-making mechanisms to autonomously decide whether disclosing personal data attributes to other agents is acceptable or not. Current self-disclosure decision-making mechanisms consider the direct benefit and the privacy loss of disclosing an attribute. However, there are many situations in which the direct benefit of disclosing an attribute is a priori unknown. This is the case in human relationships, where the disclosure of personal data attributes plays a crucial role in their development. In this paper, we present self-disclosure decision-making mechanisms based on psychological findings regarding how humans disclose personal information in the building of their relationships. We experimentally demonstrate that, in most situations, agents following these decision-making mechanisms lose less privacy than agents that do not use them. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
"This study is designed to gain insights into various aspects of family decision making. Specifically, the study examines the prevalance of autonomous versus joint decision making, the incidence of conflict in joint decision making, and the tactics used by individual household members in resolving conflict."
Resumo:
In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.
Resumo:
The use of computing to support environmental planning and the development of land use models dates back to the late 1950s. The main thrust of computing applications, which by the early 1980s increasingly included the use of geospatial technologies, is their contribution to better planning and decision making. The computing tools and technologies are designed to enhance the planners’ capability to deal with complex environments and to plan for prosperous and livable communities. This paper examines the role of Information Technologies (IT) and particularly Internet Based Geographic Information Systems (Internet GIS) as spatial decision support systems to aid community based local decision making. The paper also covers the advantages and challenges of these internet based mapping applications and tools for collaborative decision making on the environment.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been the key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Web-based Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these web-based tools for collaborative decision making.