978 resultados para Automatic meteorological stations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A remoção da vegetação para dar lugar a edificações e superfícies pavimentadas implica na anulação de diversos serviços ambientais. Entre eles está o sombreamento, que impede a aquecimento do ar derivado da re-emissão da radiação solar pelas superfícies. O ar quente e seco contribui para o aumento da sensação de desconforto e favorece a incidência de doenças respiratórias. O objetivo deste trabalho foi analisar valores de temperatura e umidade do ar, comparando-se dados coletados por estações meteorológicas automáticas instaladas em regiões arborizadas e áridas da cidade, durante a ocorrência de episódios representativos do clima da região. Os procedimentos metodológicos, baseados na Climatologia Dinâmica, consistiram em relacionar a sucessão de tipos de tempo meteorológico de escala regional às diferenças observadas entre os pontos de estudo, provocadas por fenômenos provenientes das atividades humanas. Isto permitiu a clara identificação de variações climáticas críticas para o conforto e a saúde humanos, tais como grandes amplitudes térmicas e baixos valores de umidade do ar. Os resultados mostraram amplitudes térmicas menores nas áreas arborizadas (em média 3ºC) e, em alguns casos, umidade do ar mais elevada em comparação aos valores observados nas partes áridas estudadas. Estas verificações reforçam a afirmação da necessidade de ampliação das áreas verdes de São Carlos, que contribuem na atenuação as condições climáticas de desconforto e insalubridade. Em conseqüência, aumentam a qualidade de vida da população e as condições de sustentabilidade do ambiente urbano. Tal afirmação vem ao encontro da legislação ambiental brasileira e dos anseios da população são-carlense. Espera-se que as constatações deste trabalho sejam um elemento adicional na adoção de políticas públicas mais comprometidas com a saúde humana e ambiental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In November 2001, two separate Campbell loggers ("Meteologger" and "Hydrologger", both type CR23X) were installed at the Vernagtbach site in the Oetztal Alps, Austria (Latitude: 46.85; Longitude: 10.82; Elevation: 2640 m). On these loggers, 10-minutes centred averages for the meteorological data and 5-minutes centred averages for the hydrological data are recorded. The meteorological parameters comprise air temperature, humidity of the air, air pressure, four radiation components, wind direction and speed, precipitation and snow height. For air temperature, two records are published, recorded with a ventilated and an unventilated Pt-100 in a Stevenson screen; for precipitation, three time series are available: (I) the cumulative record of a weighing gauge for the whole year, (II) single events derived from (I), and (III) single events from a tipping bucket; (II) and (III) are only provided for the period 1, May to 31, October of each year. Wind records are also given with a time step of one hour, as only these records include several statistics of speed and direction. Hydrological parameters are recorded on the "Hydrologger", they comprise water stage, discharge, water temperature and electrolytic conductivity of the water. An identifying number gives the kind of instrument used in the water stage time series. Daily photographs of the glacier are provided and analysed with respect to precipitation type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A developed and sustainable agriculture requires a permanent and reliable monitoring of climatic/ meteorological elements in (agro) meteorological stations which should be located close to agricultural, silvicultural or pastoral activities. An adequate network of meteorological stations is then a necessary condition to support innovation and development in any country. Developing countries, mainly those with a history of frequent conflicts, presents deficient number of weather stations, often poorly composed and improperly distributed within their territories, and without a regular operation that allows continuity of records for a sufficiently long period of time. The objective of this work was to build a network of meteorological and agro-meteorological stations in East Timor. To achieve this goal, the number and location of pre-existing stations, their structure and composition (number and type of sensors, communication system,… ), the administrative division of the country and the available agro-ecological zoning, the agricultural and forestry practices in the country, the existing centres for the agricultural research and the history of the weathers records were taken into account. Several troubles were found (some of the automatic stations were assembled incorrectly, others stations duplicated information regarding the same agricultural area, vast areas with relevant agro-ecological representativeness were not monitored …). It was proposed the elimination of 11 existing stations, the relocation of 7 new stations in places not covered until then, the automation of 3 manual meteorological stations. Two networks were then purposed, a major with 15 agro-meteorological stations (all automatized) and one other secondary composed by 32 weather stations (only two were manual). The set of the 47 stations corresponded to a density of 329 km2/station. The flexibility in the composition of each of the networks was safeguarded and intends to respond effectively to any substantive change in the conditions in a country in constant change. It was also discussed the national coverage by these networks under a “management concept for weather stations”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Automatic recording instruments provide the ideal means of recording the responses of rivers, lakes and reservoirs to short-term changes in the weather. As part of the project ‘Using Automatic Monitoring and Dynamic Modelling for the Active Management of Lakes and Reservoirs', a family of three automatic monitoring stations were designed by engineers at the Centre for Ecology and Hydrology in Windermere to monitor such responses. In this article, the authors describe this instrument network in some detail and present case studies that illustrate the value of high resolution automatic monitoring in both catchment and reservoir applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.