959 resultados para Automatic mesh generation
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
An automatic Mesh Generation Preprocessor for BE Programs with a considerable of capabilities has been developed. This program allows almost any kind of geometry and tipology to be defined with a small amount of external data, and with an important approximation of the boundary geometry. Also the error checking possibility is very important for a fast comprobation of the results.
Resumo:
This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM). © Published under licence by IOP Publishing Ltd.
Resumo:
The automatic generation of structured multi-block quadrilateral (quad) and hexahedral (hex) meshes has been researched for many years without definitive success. The core problem in quad / hex mesh generation is the placement of mesh singularities to give the desired mesh orientation and distribution [1]. It is argued herein that existing approaches (medial axis, paving / plastering, cross / frame fields) are actually alternative views of the same concept. Using the information provided by the different approaches provides additional insight into the problem.
Resumo:
[EN]The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications...
Resumo:
A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.
Resumo:
In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.