984 resultados para Automated identification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increased complexity, scale, and functionality of information and telecommunication (IT) infrastructures, every day new exploits and vulnerabilities are discovered. These vulnerabilities are most of the time used by ma¬licious people to penetrate these IT infrastructures for mainly disrupting business or stealing intellectual pro¬perties. Current incidents prove that it is not sufficient anymore to perform manual security tests of the IT infra¬structure based on sporadic security audits. Instead net¬works should be continuously tested against possible attacks. In this paper we present current results and challenges towards realizing automated and scalable solutions to identify possible attack scenarios in an IT in¬frastructure. Namely, we define an extensible frame¬work which uses public vulnerability databases to identify pro¬bable multi-step attacks in an IT infrastructure, and pro¬vide recommendations in the form of patching strategies, topology changes, and configuration updates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The electroencephalogram (EEG) may be described by a large number of different feature types and automated feature selection methods are needed in order to reliably identify features which correlate with continuous independent variables. New method: A method is presented for the automated identification of features that differentiate two or more groups inneurologicaldatasets basedupona spectraldecompositionofthe feature set. Furthermore, the method is able to identify features that relate to continuous independent variables. Results: The proposed method is first evaluated on synthetic EEG datasets and observed to reliably identify the correct features. The method is then applied to EEG recorded during a music listening task and is observed to automatically identify neural correlates of music tempo changes similar to neural correlates identified in a previous study. Finally,the method is applied to identify neural correlates of music-induced affective states. The identified neural correlates reside primarily over the frontal cortex and are consistent with widely reported neural correlates of emotions. Comparison with existing methods: The proposed method is compared to the state-of-the-art methods of canonical correlation analysis and common spatial patterns, in order to identify features differentiating synthetic event-related potentials of different amplitudes and is observed to exhibit greater performance as the number of unique groups in the dataset increases. Conclusions: The proposed method is able to identify neural correlates of continuous variables in EEG datasets and is shown to outperform canonical correlation analysis and common spatial patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeasts are becoming a common cause of nosocomial fungal infections that affect immunocompromised patients. Such infections can evolve into sepsis, whose mortality rate is high. This study aimed to evaluate the viability of Candida species identification by the automated system Vitek-Biomerieux (Durham, USA). Ninety-eight medical charts referencing the Candida spp. samples available for the study were retrospectively analyzed. The system Vitek-Biomerieux with Candida identification card is recommended for laboratory routine use and presents 80.6% agreement with the reference method. By separate analysis of species, 13.5% of C. parapsilosis samples differed from the reference method, while the Vitek system wrongly identified them as C. tropicalis, C. lusitaneae or as Candida albicans. C. glabrata presented a discrepancy of only one sample (25%), and was identified by Vitek as C. parapsilosis. C. guilliermondii also differed in only one sample (33.3%), being identified as Candida spp. All C. albicans, C. tropicalis and C. lusitaneae samples were identified correctly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantitative examination of prostate histology offers clues in the diagnostic classification of lesions and in the prediction of response to treatment and prognosis. To facilitate the collection of quantitative data, the development of machine vision systems is necessary. This study explored the use of imaging for identifying tissue abnormalities in prostate histology. Medium-power histological scenes were recorded from whole-mount radical prostatectomy sections at × 40 objective magnification and assessed by a pathologist as exhibiting stroma, normal tissue (nonneoplastic epithelial component), or prostatic carcinoma (PCa). A machine vision system was developed that divided the scenes into subregions of 100 × 100 pixels and subjected each to image-processing techniques. Analysis of morphological characteristics allowed the identification of normal tissue. Analysis of image texture demonstrated that Haralick feature 4 was the most suitable for discriminating stroma from PCa. Using these morphological and texture measurements, it was possible to define a classification scheme for each subregion. The machine vision system is designed to integrate these classification rules and generate digital maps of tissue composition from the classification of subregions; 79.3% of subregions were correctly classified. Established classification rates have demonstrated the validity of the methodology on small scenes; a logical extension was to apply the methodology to whole slide images via scanning technology. The machine vision system is capable of classifying these images. The machine vision system developed in this project facilitates the exploration of morphological and texture characteristics in quantifying tissue composition. It also illustrates the potential of quantitative methods to provide highly discriminatory information in the automated identification of prostatic lesions using computer vision.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A joint research to develop an efficient method for automated identification and quantification of ores [1], based on Reflected Light Microscopy (RLM) in the VNIR realm (Fig. 1), provides an alternative to modern SEM based equipments used by geometallurgists, but for ~ 1/10th of the price.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detection and correction of defects remains among the most time consuming and expensive aspects of software development. Extensive automated testing and code inspections may mitigate their effect, but some code fragments are necessarily more likely to be faulty than others, and automated identification of fault prone modules helps to focus testing and inspections, thus limiting wasted effort and potentially improving detection rates. However, software metrics data is often extremely noisy, with enormous imbalances in the size of the positive and negative classes. In this work, we present a new approach to predictive modelling of fault proneness in software modules, introducing a new feature representation to overcome some of these issues. This rank sum representation offers improved or at worst comparable performance to earlier approaches for standard data sets, and readily allows the user to choose an appropriate trade-off between precision and recall to optimise inspection effort to suit different testing environments. The method is evaluated using the NASA Metrics Data Program (MDP) data sets, and performance is compared with existing studies based on the Support Vector Machine (SVM) and Naïve Bayes (NB) Classifiers, and with our own comprehensive evaluation of these methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper will provide a rationale for developing control systems based on the availability of automated identification (Auto ID) information provision. Much of the Auto-ID research has to date focussed on developing the essential infrastructure for dynamically extracting, networking and storing product data. These developments will help to revolutionise the accuracy, quality and timeliness of data acquired by Business Information Systems and should lead to major cost savings and performance improvements as a result. This paper introduces an additional phase of Auto ID research and development in which the nature of control system decisions is reconsidered in the light of the availability of ubiquitous, unique, item-level information. The paper will: (i) Indicate why the availability of ubiquitous, unique, item-level data can enable enhanced and fundamentally different control approaches and highlight potential benefits from control systems incorporating this Auto ID data (ii) Demonstrate what is required to develop control systems based around the availability of Auto ID data. (iii) Outline the research challenges in determining how such systems will be developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.