990 resultados para Autologous periosteal cells
Resumo:
The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.
Resumo:
We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.
Resumo:
Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.
Resumo:
Fusion phage libraries expressing single-chain Fv antibodies were constructed from the peripheral blood lymphocytes of two melanoma patients who had been immunized with autologous melanoma cells transduced the gamma-interferon gene to enhance immunogenicity, in a trial conducted at another institution. Anti-melanoma antibodies were selected from each library by panning the phage against live cultures of the autologous tumor. After two or three rounds of panning, clones of the phage were tested by ELISA for binding to the autologous tumor cells; > 90% of the clones tested showed a strong ELISA reaction, demonstrating the effectiveness of the panning procedure for selecting antimelanoma antibodies. The panned phage population was extensively absorbed against normal melanocytes to enrich for antibodies that react with melanoma cells but not with melanocytes. The unabsorbed phage were cloned, and the specificities of the expressed antibodies were individually tested by ELISA with a panel of cultured human cells. The first tests were done with normal endothelial and fibroblast cells to identify antibodies that do not react, or react weakly, with two normal cell types, indicating some degree of specificity for melanoma cells. The proportion of phage clones expressing such antibodies was approximately 1%. Those phage were further tested by ELISA with melanocytes, several melanoma lines, and eight other tumor lines, including a glioma line derived from glial cells that share a common lineage with melanocytes. The ELISA tests identified three classes of anti-melanoma antibodies, as follows: (i) a melanoma-specific class that reacts almost exclusively with the melanoma lines; (ii) a tumor-specific class that reacts with melanoma and other tumor lines but does not react with the normal melanocyte, endothelial and fibroblast cells; and (iii) a lineage-specific class that reacts with the melanoma lines, melanocytes, and the glioma line but does not react with the other lines. These are rare classes from the immunized patients' repertoires of anti-melanoma antibodies, most of which are relatively nonspecific anti-self antibodies. The melanoma-specific class was isolated from one patient, and the lineage-specific class was isolated from the other patient, indicating that different patients can have markedly different responses to the same immunization protocol. The procedures described here can be used to screen the antibody repertoire of any person with cancer, providing access to an enormous untapped pool of human monoclonal anti-tumor antibodies with clinical and research potential.
Resumo:
Although they are considered as antigen presenting cells (APC), the role of antigen-unspecific B-lymphocytes in antigen presentation and T lymphocyte stimulation remains controversial. In this paper, we tested the capacity of normal human peripheral activated B cells to stimulate T cells using melanoma antigens or melanoma cell lysates. B lymphocytes activated through CD40 ligation and then pulsed with tumor antigens efficiently processed and presented MHC class II restricted peptides to specific CD4+ T cell clones. This suggests that CD40-activated B cells have the functional and molecular competence to present MHC class II epitopes when pulsed with exogenous antigens, thereby making them a relevant source of APC to generate T cells. To test this hypothesis, CD40-activated B cells were pulsed with a lysate prepared from melanoma cells and used to stimulate peripheral autologous T cells. Interestingly, T cells specific to melanoma antigens were generated. Further analysis of these T cell clones revealed that they recognized MHC class II restricted epitopes from tyrosinase, a known melanoma tumor antigen. The efficient antigen presentation by antigen-unspecific activated B cells was correlated with a down-regulation in the expression of HLA-DO, a B cell specific protein known to interfere with HLA-DM function. Because HLA-DM is important in MHC class II peptide loading, the observed decrease in HLA-DO may partially explain the enhanced antigen presentation following B-cell activation. Results globally suggest that when they are properly activated, antigen-unspecific B-lymphocytes can present exogenous antigens by MHC class II molecules and stimulate peripheral antigen-specific T cells. Antigen presentation by activated B cells could be exploited for immunotherapy by allowing the in vitro generation of T cells specific against antigens expressed by tumors or viruses.
Resumo:
This study assessed the effects of a single intracoronary injection of autologous stem cells on the cardiac function of dogs with Chagas cardiomyopathy. Bone-marrow-derived stem cells were delivered into the right and left coronary arteries of 5 mature dogs with mildly compromised cardiac function due to chronic Chagas cardiomyopathy. Blood pressure and electrocardiographic and echocardiographic parameters were recorded at monthly intervals for 6 mo in the 3 dogs that survived. Although no changes were observed in the electrocardiogram and blood pressure, there was a significant increase in peak velocity of aortic flow 3 mo after stem cell transplantation. Pre-ejection period, isovolumic relaxation time, and the Tei index of myocardial performance were reduced significantly 4 mo after the procedure. All significant changes persisted to the end of the study. The results suggest that the transplantation of autologous bone-marrow-derived stem cells into the coronary arteries of dogs with Chagas cardiomyopathy may have a beneficial effect but the small number of dogs studied was a limitation.
Resumo:
Background: Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. Objective: To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. Methods: DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T-H) 17 cells, and production of IFN-gamma, TGF-beta, IL-4, IL-5, and IL-17. Results: Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-g production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T-H(2) pattern response. Conclusion: Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM. (J Allergy Clin Immunol 2012; 129: 778-86.)
Resumo:
Human cord blood plasmacytoid dendritic cells (PDC) react to stimulation with CPG A and CPG B with an increase in cell surface activation and maturation markers and cytokine production, similar to adult PDC. Intracellular phosphorylation in neonatal PDC did not benefit from CPG stimulation, in contrast to adult PDC. Cord blood PDC primed with CPG A, CPG B and CD40L do not promote division of autologous T cells contrary to adult PDC. Priming of neonatal PDC with CPG A or CPG B does not induce a clear bias in T helper cell response towards Th1 or Th2 while adult PDC trend towards a Th2 response.
Resumo:
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.
Resumo:
Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury.
Resumo:
Current practice in Switzerland for the mobilization of autologous stem cells in patients with myeloma is combining vinorelbine chemotherapy and granulocyte-colony stimulating factor (G-CSF) cytokine stimulation. We prospectively investigated adding intravenous plerixafor to the vinorelbine/G-CSF combination (VGP), and compared it with vinorelbine/plerixafor (VP) and G-CSF/plerixafor (GP) combinations. In a final cohort (VP-late), plerixafor was given on the first day of CD34 + cells increasing to > 15 000/mL peripheral blood. Four consecutive cohorts of 10 patients with myeloma were studied. We observed that intravenously administered plerixafor can be safely combined with vinorelbine/G-CSF. VGP was superior in mobilizing peripheral stem and progenitor cells compared to the three double combinations (VP, GP and VP-late), and GP mobilized better than VP. Our data indicate that the triple combination of VGP is an efficient strategy to collect autologous CD34 + cells, with G-CSF contributing predominantly in this concept. Plerixafor can be safely added to G-CSF and/or vinorelbine chemotherapy.
Resumo:
To formally test the hypothesis that the granulocyte/macrophage colony-forming unit (GM-CFU) cells can contribute to early hematopoietic reconstitution immediately after transplant, the frequency of genetically modified GM-CFU after retroviral vector transduction was measured by a quantitative in situ polymerase chain reaction (PCR), which is specific for the multidrug resistance-1 (MDR-1) vector, and by a quantitative GM-CFU methylcellulose plating assay. The results of this analysis showed no difference between the transduction frequency in the products of two different transduction protocols: “suspension transduction” and “stromal growth factor transduction.” However, when an analysis of the frequency of cells positive for the retroviral MDR-1 vector posttransplantation was carried out, 0 of 10 patients transplanted with cells transduced by the suspension method were positive for the vector MDR-1 posttransplant, whereas 5 of 8 patients transplanted with the cells transduced by the stromal growth factor method were positive for the MDR-1 vector transcription unit by in situ or in solution PCR assay (a difference that is significant at the P = 0.0065 level by the Fisher exact test). These data suggest that only very small subsets of the GM-CFU fraction of myeloid cells, if any, contribute to the repopulation of the hematopoietic tissues that occurs following intensive systemic therapy and transplantation of autologous hematopoietic cells.
Resumo:
The human Melan-A/MART-1 gene encodes an HLA-A2-restricted peptide epitope recognized by melanoma-reactive CD8+ cytotoxic T lymphocytes. Here we report that this gene also encodes at least one HLA-DR4-presented peptide recognized by CD4+ T cells. The Melan-A/MART-151–73 peptide was able to induce the in vitro expansion of specific CD4+ T cells derived from normal DR4+ donors or from DR4+ patients with melanoma when pulsed onto autologous dendritic cells. CD4+ responder T cells specifically produced IFN-γ in response to, and also lysed, T2.DR4 cells pulsed with the Melan-A/MART-151–73 peptide and DR4+ melanoma target cells naturally expressing the Melan-A/MART-1 gene product. Interestingly, CD4+ T cell immunoreactivity against the Melan-A/MART-151–73 peptide typically coexisted with a high frequency of anti-Melan-A/MART-127–35 reactive CD8+ T cells in freshly isolated blood harvested from HLA-A2+/DR4+ patients with melanoma. Taken together, these data support the use of this Melan-A/MART-1 DR4-restricted melanoma epitope in future immunotherapeutic trials designed to generate, augment, and quantitate specific CD4+ T cell responses against melanoma in vivo.