993 resultados para Auto-renouvellement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’initiation de la leucémogénèse dans la leucémie aigue lymphoblastique (LAL)-T résulte de l’activation aberrante de facteurs de transcription de la lignée lymphocytaire T. Nous démontrons que les gènes de fusion NUP98-PHF23 (NP23) et NUP98-HOXD13 (NHD13) reprogramment les thymocytes normaux en cellules souches pré-leucémiques (CS-préL) possédant un potentiel aberrant d’auto-renouvellement. Basé sur des essais de clonalité performés sur des thymocytes transplantés en série, nous avons découvert que cette population est hiérarchisée similairement aux cellules souches hématopoïétiques normales. Ces CS-préL dévoilent un enrichissement du compartiment de précurseurs thymiques immatures KIT+ où les deux oncogènes, NP23 et NHD13, activent des gènes impliqués dans l’autorenouvellement, incluant Hoxa9, Hoxa10, Lyl1 et Hhex. De plus, l’activité d’autorenouvellement est abrogée par les ARN interférents contre Lyl1 et Hhex, indiquant leur implication fonctionnelle en aval de NP23 et NHD13. Puisque ces gènes sont aussi activés en aval de trois autres oncogènes dans la LAL-T, SCL/TAL1, LMO1 et LMO2, nous concluons que les niveaux d’activation de Lyl1 et Hhex fixent le seuil de reprogrammation des thymocytes normaux en CS-préL. Malgré l'efficacité des traitements de chimiothérapie actuels à diminuer la masse tumorale, les CS-préL sont épargnées, pouvant mener à des rechutes. Nos résultats répondent à ce besoin et proposent de nouvelles avenues permettant de cibler les CS-préL du compartiment de thymocytes immatures dans la LAL-T.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’initiation de la leucémogénèse dans la leucémie aigue lymphoblastique (LAL)-T résulte de l’activation aberrante de facteurs de transcription de la lignée lymphocytaire T. Nous démontrons que les gènes de fusion NUP98-PHF23 (NP23) et NUP98-HOXD13 (NHD13) reprogramment les thymocytes normaux en cellules souches pré-leucémiques (CS-préL) possédant un potentiel aberrant d’auto-renouvellement. Basé sur des essais de clonalité performés sur des thymocytes transplantés en série, nous avons découvert que cette population est hiérarchisée similairement aux cellules souches hématopoïétiques normales. Ces CS-préL dévoilent un enrichissement du compartiment de précurseurs thymiques immatures KIT+ où les deux oncogènes, NP23 et NHD13, activent des gènes impliqués dans l’autorenouvellement, incluant Hoxa9, Hoxa10, Lyl1 et Hhex. De plus, l’activité d’autorenouvellement est abrogée par les ARN interférents contre Lyl1 et Hhex, indiquant leur implication fonctionnelle en aval de NP23 et NHD13. Puisque ces gènes sont aussi activés en aval de trois autres oncogènes dans la LAL-T, SCL/TAL1, LMO1 et LMO2, nous concluons que les niveaux d’activation de Lyl1 et Hhex fixent le seuil de reprogrammation des thymocytes normaux en CS-préL. Malgré l'efficacité des traitements de chimiothérapie actuels à diminuer la masse tumorale, les CS-préL sont épargnées, pouvant mener à des rechutes. Nos résultats répondent à ce besoin et proposent de nouvelles avenues permettant de cibler les CS-préL du compartiment de thymocytes immatures dans la LAL-T.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SummaryEwing's sarcoma family tumors (ESFT) are the second most frequent cancer of bone in adolescents and young adults. ESFT are characterized by a chromosomal translocation that involves the 5' segment of the EWSR1 gene and the 3' segment of an ets transcription factor family member gene. In 85% of cases the chromosomal translocation generates the fusion protein EWSR1-FLI-1. Recent work from our laboratory identified mesenchymal stem cells (MSC) as the putative cell of origin of ESFT and characterized a CD133+ subpopulation of ESFT cells with tumor initating and self-renewal capacity, known as cancer stem cells (CSC). MicroRNAs (miRNAs) are small non-coding RNA that regulate protein expression at the post-transcriptional level by either repressing translation or destabilizing mRNA. MiRNAs participate in several biological processes including cell proliferation and differentiation. We used miRNA expression profile comparison between MSC and ESFT cell lines and CD133+ ESFT cells and CD133" ESFT cells to investigate the role of miRNAs in ESFT pathogenesis. MiRNA expression profile comparison of MSC and ESFT cell lines identified 35 differentially expressed miRNAs. Among these was down-regulation of let-7a which results, in part, by the direct repression of let-7a-l promoter by EWSR1-FLI-1. Overexpression of let-7a in ESFT cells blocked ESFT tumorigenesis through an High-motility group AT-hook2 (HMGA2)-mediated mechanism.MiRNA profiling of CD133+ ESFT and CD 133" ESFT cells revealed a broad repression of miRNAs in CD133+ ESFT mediated by down-regulation of TARBP2, a central regulator of the miRNA maturation pathway. Down-regulation of TARBP2 in ESFT cell lines results in a miRNA expression profile reminescent of that observed in CD133+ ESFT and associated with increased tumorigenicity. Enhancement of TARBP2 activity using the antibiotic enoxacin or overexpression of miRNA-143 or miRNA-145, two targets of TARBP2, impaired ESFT CSC self-renewal and block ESFT tumorigenicity. Moreover in vivo administration of synthetic let- 7a, miRNA-143 or miRNA-145 blocks ESFT tumor growth.Thus, dysregulation of miRNA expression is a key feature in ESFT pathogenesis and restoration of their expressions might be used as a new therapeutic tool.RésuméLe sarcome d'Ewing est la deuxième tumeur osseuse la plus fréquente chez l'enfant et le jeune adolescent. Le sarcome d'Ewing est caractérisé par une translocation chromosomique qui produit une protéine de fusion EWSR1-FLI-1. Des récents travaux ont identifié les cellules mésenchymateuses souches (MSC) comme étant les cellules à l'origine du sarcome d'Ewing ainsi qu'une sous-population de cellules exprimant le marqueur CD 133, dans le sarcome d'Ewing connu comme les cellules cancéreuses souches (CSC). Ces cellules ont la capacité d'initier la croissance tumorale et possèdent des propriétés d'auto-renouvellement. Les microRNAs (miRNAs) sont de petits ARN qui ne codent pas pour des protéines et qui contrôlent l'expression des protéines en bloquant la traduction ou en dégradant l'ARNm. Les miRNAs participent à différents processus biologiques comme la prolifération et la différenciation cellulaires.Le but de ce travail est d'étudier le rôle des miRNAs dans le sarcome d'Ewing. Un profil d'expression de miRNAs entre les MSC et des lignées cellulaires de sarcome d'Ewing a mis en évidence 35 miRNAs différemment exprimés. Parmi ceux-ci, la répression de let-7a est liée à la répression directe du promoteur de let-7a-l par EWSR-FLI-1. La sur-expression de let-7a dans des lignées cellulaires de sarcome d'Ewing inhibe leur croissance tumorale. Cette inhibition de croissance tumorale est régulée par la protéine high-motility group AT-hook2 (HMGA2).Un profil d'expression de miRNAs entre les cellules du sarcome d'Ewing CD133+ et CD133" montre une sous-expression d'un grand nombre de miRNAs dans les cellules CD133+ par rapport aux cellules CD133". Cette différence d'expression de miRNAs est due à la répression du gène TARBP2 qui participe à la maturation des miRNAs. La suppression de TARBP2 dans des cellules d'Ewing induit un profil d'expression de miRNAs similaire aux cellules CD133+ du sarcome d'Ewing et augmente la tumorigenèse des lignées cellulaires. De plus l'utilisation d'enoxacin, une molécule qui augmente l'activité de TARBP2 ou la sur- expression des miRNA143 ou miRNA-145 dans les CSC du sarcome d'Ewing bloque l'auto- renouvellement des cellules et la croissance tumorale. Finalement, l'administration de let-7a, miRNA-143 ou miRNA-145, dans des souris bloque la croissance du sarcome d'Ewing. Ces résultats indiquent que la dysrégulation des miRNAs participe à la pathogenèse du sarcome d'Ewing et que les miRNAs peuvent être utilisés comme des agents thérapeutiques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé Identification, localisation et activation des cellules souches hématopoiétiques dormantes in vivo Les cellules souches somatiques sont présentes dans la majorité des tissus régénératifs comme la peau, l'épithélium intestinal et le système hématopoiétique. A partir d'une seule cellule, elles ont les capacités de produire d'autres cellules souches du même type (auto-renouvellement) et d'engendrer un ensemble défini de cellules progénitrices différenciées qui vont maintenir ou réparer leur tissu hôte. Les cellules souches adultes les mieux caractérisées sont les cellules souches hématopoiétiques (HSC), localisées dans la moelle osseuse. Un des buts de mon travail de doctorat était de caractériser plus en profondeur la localisation des HSCs endogènes in vivo. Pour ce faire, la technique "label retaining assay", se basant sur la division peu fréquentes et sur la dormance des cellules souches, a été utilisée. Après un marquage des souris avec du BrdU (analogue à l'ADN) suivi d'une longue période sans BrdU, les cellules ayant incorporés le marquage ("label retaining cells" LCRs) ont pu être identifiées dans la moelle osseuse. Ces cellules LCRs étaient enrichies 300 fois en cellules de phenotype HSC et, en utilisant de la cytofluorométrie, il a pu être montré qu'environ 15% de toutes les HSCs d'une souris restent dormantes durant plusieures semaines. Ces HSCs dormantes à long terme ne sont probablement pas impliquées dans la maintenance de 'hématopoièse. Par contre, on assiste à l'activation rapide de ces HSCs dormantes lors d'une blessure, comme une ablation myéloide. Elles re-entrent alors en cycle cellulaire et sont essentielles pour une génération rapide des cellules progénitrices et matures qui vont remplacer les cellules perdues. De plus, la détection des LCRs, combinée avec l'utilisation du marqueur de HSCs c-kit, peut être utilisée pour la localisation des HSCs dormantes présentes dans la paroi endostéale de la cavité osseuse. De manière surprenante, les LCRs c-kit+ ont surtout étés trouvées isolées en cellule unique, suggérant que le micro-environement spécifique entourant et maintenant les HSCs, appelé niche, pourrait être très réduit et abriter une seule HSC par niche. Rôles complexes du gène supresseur de tumeur Pten dans le système hématopoiétique La phosphatase PTEN disparaît dans certains cancers héréditaires ou sporadiques humains, comme les gliomes, les cancers de l'utérus ou du sein. Pten inhibe la voie de signalisation de la PI3-kinase et joue un rôle clé dans l'apoptose, la croissance, la prolifération et la migration cellulaire. Notre but était d'étudier le rôle de Pten dans les HSC normale et durant la formation de leucémies. Pour ce faire, nous avons généré un modèle murin dans lequel le gène Pten peut être supprimé dans les cellules hématopoiétiques, incluant les HSCs. Ceci a été possible en croissant l'allèle conditionnelle ptenflox soit avec le transgène MxCre inductible par l'interféron α soit avec le transgène Scl-CreERt inductible par le tamoxifen. Ceci permet la conversion de l'allèle ptenflox en l'allèle nul PtenΔ dans les HSCs et les autres types cellulaires hématopoiétiques. Les souris mutantes Pten développent une splénomégalie massive causée par une expansion dramatiques de toutes les cellules myéloides. De manière interessante, alors que le nombre de HSCs dans la moelle osseuse diminue progressivement, le nombre des HSCs dans la rate augmente de manière proportionnelle. Etrangement, les analyses de cycle cellulaire ont montrés que Pten n'avait que peu ou pas d'effet sur la dormance des HSCs ou sur leur autorenouvellement. En revanche, une augmentation massive du niveau de la cytokine de mobilisation G-CSF a été détéctée dans le serum sanguin, suggérant que la suppression de Pten stimulerait la mobilisation et la migration des HSC de la moelle osseuse vers la rate. Finallement, la transplantation de moelle osseuse délétée en Pten dans des souris immuno-déficientes montre que Pten fonctionnerait comme un suppresseur de tumeur dans le système hématopoiétique car son absence entraîne la formation rapide de leucémies lymphocytaires. Summary Identification, localization and activation of dormant hematopoietic stun cells in vivo Somatic stem cells are present in most self-renewing tissues including the skin, the intestinal epithelium and the hematopoietic system. On a single cell basis they have the capacity to produce more stem cells of the same phenotype (self-renewal) and to give rise to a defined set of mature differentiated progeny, responsible for the maintenance or repair of the host tissue. The best characterized adult stem cell is the hematopoietic stem cell (HSC) located in the bone marrow. One goal of my thesis work was to further characterize the location of endogenous HSCs in vivo. To do this, a technique called "label retaining assay» was used which takes advantage of the fact that stem cells (including HSCs) divide very infrequently and can be dormant for months. After labeling mice with the DNA analogue BrdU followed by a long BrdU free "chase", BrdU "label retaining cells" (CRCs) could be identified in the bone marrow. These CRCs were 300-fold enriched for phenotypic HSCs and by using flow cytometry analysis it could be shown that about 15% of all HSCs in the mouse are dormant for many weeks. Our results suggest that these long-term dormant HSCs are unlikely to be involved in homeostatic maintenance. However they are rapidly activated and reenter the cell cycle in response to injury signals such as myeloid ablation. In addition, detection of LRCs in combination with the HSC marker c-Kit could be used to locate engrafted dormant HSCs close to the endosteal lining of the bone marrow cavities. Most surprisingly, c-Kit+LRCs were found predominantly as single cells suggesting that the specific stem cell maintaining microenvironment, called niche, has limited space and may house only single HSCs. Complex roles of the tumor suppressor gene Pten in the hematopoietic system. The phosphatase PTEN is lost in hereditary and sporadic forms of human cancers, including gliomas, endometrial and breast cancers. Pten inhibits the PI3-kina.se pathway and plays a key role in apoptosis, cell growth, proliferation and migration. Our aim was to study the role of Pten in normal HSCs and during leukemia formation. To do this, we generated a mouse model in which the Pten gene can be deleted in hematopoietic cells including HSCs. This was achieved by crossing the conditional ptenflox allele with either the interferona inducible MxCre or the tamoxifen inducible Scl-CreERT transgene. This allowed the conversion of the ptenflox allele into a pterr' null allele in HSCs and other hematopoietic cell types. As a result Pten mutant mice developed massive splenomegaly due to a dramatic expansion of all myeloid cells. Interestingly, while the number of bone marrow HSCs progressively decreased, the number of HSCs in the spleen increased to a similar extent. Unexpectedly, extensive cell cycle analysis showed that Pten had little or no effect on HSC dormancy or HSC self-renewal. Instead, dramatically increased levels of the mobilizing cytokine G-CSF were detected in the blood serum suggesting that loss-of Pten stimulates mobilization and migration of HSC from the BM to the spleen. Finally, transplantation of Pten deficient BM cells into immuno-compromised mice showed that Pten can function as a tumor suppressor in the hematopoietic system and that its absence leads to the rapid formation of T cell leukemia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé : c-Myc, le premier facteur de transcription de la famille Myc a été découvert il y a maintenant trente ans. Il reste à l'heure actuelle parmi les plus puissants proto-oncogènes connus. c-Myc est dérégulé dans plus de 50% des cancers, où il promeut la prolifération, la croissance cellulaire, et la néoangiogenèse. Myc peut aussi influencer de nombreuses autres fonctions de par sa capacité à activer ou à réprimer la transcription de nombreux gènes, et à agir globalement sur le génome à travers des modifications épigénétiques de la chromatine. La famille d'oncogènes Myc comprend, chez les mammifères, trois protéines structurellement proches: c-Myc, N-Myc et L-Myc. Ces protéines ont les mêmes proprietés biochimiques, exercent les mêmes fonctions mais sont le plus souvent exprimées de façon mutuellement exclusive. Myc a été récemment identifié comme un facteur clef dans la maintenance des cellules souches embryonnaires et adultes ainsi que dans la réacquisition des proprietés des cellules souches. Nous avons précédemment démontré que l'élimination de c-Myc provoque une accumulation de cellules souches hématopoïétiques (CSH) suite à un défaut de différenciation lié à la niche. Les CSH sont responsables de la production de tous les éléments cellulaires du sang pour toute la vie de l'individu et sont définies par leur capacité à s'auto-renouveler tout en produisant des précurseurs hématopoïétiques. Afin de mieux comprendre la fonction de Myc dans les CSH, nous avons choisi de combiner l'utilisation de modèles de souris génétiquement modifiées à une caractérisation systématique des schémas d'expression de c-Myc, N-Myc et L-Myc dans tout le système hématopoïétique. Nous avons ainsi découvert que les CSH les plus immatures expriment des quantités équivalentes de transcrits de c-myc et N-myc. Si les CSH déficientes en N-myc seulement ont une capacité d'auto-renouvellement à long-terme réduite, l'invalidation combinée des gènes c-myc et N-myc conduit à une pan-cytopénie suivie d'une mort rapide de l'animal, pour cause d'apoptose de tous les types cellulaires hématopoïétiques. En particulier, les CSH en cours d'auto-renouvelemment, mais pas les CSH quiescentes, accumulent du Granzyme B (GrB), une molécule fortement cytotoxique qui provoque une mort cellulaire rapide. Ces données ont ainsi mis au jour un nouveau mécanisme dont dépend la survie des CSH, à savoir la répression du GrB, une enzyme typiquement utilisée par le système immunitaire inné pour éliminer les tumeurs et les cellules infectées par des virus. Dans le but d'évaluer l'étendue de la redondance entre c-Myc et N-Myc dans les CSH, nous avons d'une part examiné des souris dans lesquelles les séquences codantes de c-myc sont remplacées par celles de N-myc (NCR) et d'autre part nous avons géneré une série allèlique de myc en éliminant de façon combinatoire un ou plusieurs allèles de c-myc et/ou de N-myc. Alors que l'analyse des souris NCR suggère que c-Myc et N-Myc sont qualitativement redondants, la série allélique indique que les efficiences avec lesquelles ces deux protéines influencent des procédés essentiels à la maintenance des CSH sont différentes. En conclusion, nos données génétiques montrent que l'activité générale de MYC, fournie par c-Myc et N-Myc, contrôle plusieurs aspects cruciaux de la fonction des CSH, notamment l'auto-renouvellement, la survie et la différenciation. Abstract : c-Myc, the first Myc transcription factor was discovered 30 years ago and is to date one of the most potent proto-oncogenes described. It is found to be misregulated in over 50% of all cancers, where it drives proliferation, cell growth and neo-angiogenesis. Myc can also influence a variety of other functions, owing to its ability to activate and repress transcription of many target genes and to globally regulate the genome via epigenetic modifications of the chromatin. The Myc family of oncogenes consists of three closely related proteins in mammals: c-Myc, N-Myc and L-Myc. These proteins share the same biochemical properties, exert mostly the same functions, but are most often expressed in mutually exclusive patterns. Myc is now emerging as a key factor in maintenance of embryonic and adult stem cells as well as in reacquisition of stem cell properties, including induced reprogramming. We previously showed that c-Myc deficiency can cause the accumulation of hematopoietic stem cells (HSCs) due to a niche dependent differentiation defect. HSCs are responsible for life-long replenishment of all blood cell types, and are defined by their ability to self-renew while concomitantly giving rise to more commited progenitors. To gain further insight into the function of Myc in HSCs, in this study we combine the use of genetically-modified mouse models with the systematic characterization of c-myc, N-myc and L-myc transcription patterns throughout the hematopoietic system. Interestingly, the most immature HSCs express not only c-myc, but also about equal amounts of N-myc transcripts. Although conditional deletion of N-myc alone in the bone marrow does not affect steady-state hematopoiesis, N-myc null HSCs show impaired long-term self-renewal capacity. Strikingly, combined deficiency of c-Myc and N-Myc results in pan-cytopenia and rapid lethality, due to the apoptosis of most hematopoietic cell types. In particular, self-renewing HSCs, but not quiescent HSCs or progenitor cell types rapidly up-regulate and accumulate the potent cytotoxic molecule GranzymeB (GrB), causing their rapid cell death. These data uncover a novel pathway on which HSC survival depends on, namely repression of GrB, a molecule typically used by the innate immune system to eliminate tumor and virus infected cells. To evaluate the extent of redundancy between c-Myc and N-Myc in HSCs, we examined mice in which c-myc coding sequences are replaced by that of N-myc (NCR) and also generated an allelic series of myc, by combinatorially deleting one or several c-myc and/or N-myc alleles. While the analysis of NCR mice suggests that c-Myc and N-Myc are qualitatively functionally redundant, our allelic series indicates that the efficiencies with which these two proteins affect crucial HSC maintenance processes are likely to be distinct. Collectively, our genetic data show that general "MYC" activity delivered by c-Myc and N-Myc controls crucial aspects of HSC function, including self-renewal, survival and niche dependent differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs sont issues et se développent grâce à un petit nombre de cellules, que l'on appelle cellules souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC connus à ce jour sont aussi exprimés dans les cellules saines. Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints de différents types de cancers. Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour cibler l'ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles présentaient les caractéristiques de CSC, telles qu'une forte expression de hTERT et des gènes spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de BORIS a été mise en évidence dans des populations enrichies en CSC ('side population' et sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, nous avons montré que le blocage de l'expression de BORIS altère largement la capacité de ces cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto- renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur important qui régule l'expression de gènes jouant un rôle clé dans le développement et la progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la transcription de ces gènes par des modifications épigénétiques et de manière différente en fonction du type cellulaire. En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule cible. - Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the European region. Current evidences suggest that tumors originate and are maintained thanks to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for the appearance of metastasis and therapeutic resistance. Consequently, the identification of genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic resistance) is necessary to better understand the biology of malignant diseases and to improve care management. To date, numerous markers have been proposed to use as new CSC- targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs markers are also expressed in normal cells. This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic reprogramming in normal development and in tumorigenesis. Recent studies have shown an association of BORIS expression with a poor prognosis in different types of cancer patients. Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is re-expressed in a wide variety of tumors. We developed a new molecular beacon-based technology to target BORIS mRNA expressing cells. Using this system, we showed that the BORIS expressing cells are only a small subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side population and spheres). These results suggest that BORIS might be a novel and powerful CSCs marker. In functional studies, we observed that BORIS knockdown significantly impairs the capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that BORIS is an important factor that regulates the expression of key-target genes for tumor development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial mesenchymal transition)-related marker genes. BORIS could affect the transcriptional regulation of these genes by epigenetic modification and in a cell type dependent manner. In summary, our results support the evidence that BORIS can be classified as a cancer stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in tumorigenesis. This study opens new prospective to understand the biology of tumor development and provides opportunities for potential anti-tumor drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SummaryCanonical Wnt signaling is crucial for embryonic development and the homeostasis of certain adult tissues such as the gut and the skin. The role of canonical Wnt signaling in hematopoiesis is still debated. The expression of a dominant-active β-catenin in hematopoietic stem cells (HSCs) enhances the self-renewal capacity of HSCs but is detrimental for long-term hematopoiesis. In contrast, loss of function experiments show that absence of β- and γ-catenin does not impair steady-state hematopoiesis. It has been argued that the inducible deletion of β-catenin using the IFN-responsive Mx promoter may somehow influence stem cell fate. Herein we used the constitutive deletion of β-catenin specifically in hematopoietic cells to show that the absence of β- catenin, as well as γ-catenin deletion, does not impair normal hematopoiesis and self-renewal capacity of HSCs.Dysregulation of canonical Wnt signaling is causal for several types of cancer, including colon carcinoma or breast cancer. Recently, it was found that Wnt signal transduction was upregulated in certain leukemias. Based on these data, we have investigated whether β- and γ-catenin play a role for the induction of leukemias by oncogenic BCR-ABL translocation product. We show that the induction of B-ALL (B cell acute lymphocytic leukemia) is strongly reduced in the absence of γ-catenin, while the induction of CML (chronic myeloid leukemia) occurs at a normal rate. In the combined absence of β- and γ-catenin the induction of both CML and B-ALL is essentially blocked. Consistent with these data others have found that β-catenin is essential for the induction of CML by BCR-ABL.Collectively, we find that β- and γ-catenin are dispensable for normal hematopoiesis but essential for the development of BCR-ABL induced leukemias. These findings suggest that the canonical Wnt pathway may represent a promising target for the therapy of leukemia.RésuméLa voie de signalisation canonique Wnt est essentielle pour le développement embryonnaire ainsi que l'homéostasie de certains tissus adultes, comme les intestins et la peau. Le rôle de la voie canonique Wnt pour l'hématopoïèse est encore incertain. D'un coté l'expression d'une forme active de β-catenine dans les cellules souches de la moelle augmente leur potentiel d'auto- renouvellement mais est préjudiciable pour l'hématopoïèse à long terme. Par contre, l'absence de β- et γ-catenine n'empêche pas le déroulement normal de l'hématopoïèse. La façon dont est supprimée β-catenine, en utilisant le promoteur IFN-inductible Mx, pourrait influencer le sort des cellules souches. Ici nous détruisons β-catenine spécifiquement dans les cellules hématopoïétiques de manière constitutive et montrons que, en combinaison avec l'absence de γ-catenine, l'absence de β-catenine n'affecte pas le déroulement normal de l'hématopoïèse et la capacité des cellules souches de la moelle à se renouveler.Plusieurs sortes de cancers, comme celui du colon ou du sein, sont parfois dus à une dérégulation de la voie canonique Wnt. Récemment, certaines leucémies ont présenté une activation du signal Wnt. A partir de ces données, nous avons examiné si β- et γ-catenine jouent un rôle dans l'induction des leucémies causées par le produit de translocation BCR-ABL. Nous avons montré que l'induction de la leucémie aiguë lymphoïde de cellules Β (LAL-B) est grandement diminuée en l'absence de γ-catenin, alors que l'induction de la leucémie myéloïde chronique (LMC) n'est pas affectée. En l'absence des deux catenines, l'induction des deux leucémies LAL-B et LMC est presque complètement bloquée. En confirmation de nos données, un autre groupe a montré que β-catenine est essentielle pour le développement de la LMC. Ensemble, ces données nous montrent que β- et γ-catenine ne sont pas nécessaires pour l'hématopoïèse normale, mais essentielle pour le développement des leucémies induites par BCR-ABL. Cela suggère que la voie de signalisation canonique Wnt est une cible prometteuse pour de futures thérapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le neuroblastome (NB), tumeur spécifique de l'enfant, se situe au second rang en terme de¦fréquence des tumeurs solides dans la population pédiatrique (1). Il dérive des cellules¦primitives de la crête neurale, une population de cellules embryonnaires dotées d'une¦capacité de différentiation en une panoplie de tissus très variés, dont le système nerveux¦sympathique (2). Cette origine explique la très grande hétérogénéité du NB, tant du point de¦vue biologique que clinique (3). Malgré un traitement intensif et multimodal (chirurgie,¦chimiothérapie à haute dose, greffe de moelle osseuse et immunothérapie), seuls 30 % des¦patients de haut risque (stade IV) survivent sans rechute. La forte résistance du¦neuroblastome de haut grade aux diverses thérapies est une des causes probable du¦pronostic sombre de cette tumeur. Les thérapies actuelles étant insuffisamment efficaces, il¦est primordial de comprendre les mécanismes impliqués dans le processus de résistance¦afin d'élaborer de nouveaux traitements, mieux ciblés, capables de contrer toute résistance¦(4).¦Il a été démontré que certains cancers, tels que les tumeurs du poumon, du sein, de la¦prostate ou du colon, possédaient des cellules souches cancéreuses (CSCs) (5). Ces¦dernières, définies comme étant une petite sous-population de cellules malignes, jouent un¦rôle prépondérant dans l'initiation et la progression tumorale. Elles partagent certaines¦propriétés avec les cellules souches physiologiques, telles que la capacité d'autorenouvellement,¦un potentiel de prolifération indéfini, une dépendance à un¦microenvironnement spécifique, une faculté de pluripotence et une résistance accrue aux¦drogues (6). Ce modèle de CSCs a également été étudié pour le NB (7), permettant ainsi¦d'avancer l'hypothèse selon laquelle cette population de CSCs serait responsable de la¦résistance aux chimiothérapies des cellules tumorales du NB.¦Afin de tenter d'éclaircir le caractère résistant aux drogues des CSCs du NB, nous avons¦sélectionné des sous-populations cellulaires résistantes, en traitant par divers agents¦cytotoxiques (cisplatine, doxorubicine, rapamycine et vincristine) cinq lignées différentes de¦neuroblastes. Dans le but d'établir un potentiel enrichissement en CSCs au sein de ces¦sous-populations par rapport aux populations contrôles non traitées, nous avons testé leurs¦fonctions d'auto-renouvellement et de clonogénicité. Ces propriétés ont été respectivement¦mises en évidence par la capacité des cellules à former des sphères de plusieurs¦générations dans des conditions de culture inhibant l'adhésion cellulaire et par la mesure de¦la croissance cellulaire en milieu semi-solide (soft agar assay). Une analyse d'expression¦génique effectuée préalablement par microarray (Human Genome U133Plus 2.0 Affymetrix¦GeneChip oligonucleotide) dans le laboratoire avait révélé une liste de gènes surexprimés¦dans les CSCs, dont fait partie mdr1 (8). Ce gène code la protéine de transport Pgp (Pglycoprotein),¦impliquée dans le mécanisme de résistance (9,10). Une étude par cytométrie¦en flux de l'expression de MDR1 dans nos diverses populations a également été réalisée¦afin de mettre en évidence une potentielle surexpression de ce gène au sein des cellules¦résistantes aux chimiothérapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Des études présentées dans cette thèse ont permis de démontrer que le gène du groupe Polycomb (PcG) Bmi1 est essentiel à l’auto-renouvellement des progéniteurs rétiniens immatures et pour le développement rétinien après la naissance. Ce travail illustre chez l’embryon que Bmi1 est hautement enrichie dans une sous-population de progéniteurs rétiniens exprimant le marqueur de surface SSEA-1 et différents marqueurs de cellules souches. À tous les stades de développement analysés, l’absence de Bmi1 résulte en une diminution de la prolifération et de l’auto-renouvellement des progéniteurs immatures. Pour mieux comprendre la cascade moléculaire en absence de Bmi1, nous avons inactivé p53 dans les colonies Bmi1-/-. Cette inactivation a permis une restauration partielle du potentiel d’auto-renouvellement. De plus, en absence de Bmi1, la prolifération et la maintenance de la population de progéniteurs rétiniens immatures localisés dans le corps ciliaire sont aussi affectées après la naissance. Bmi1 permet donc de distinguer les progéniteurs immatures de la population principale de progéniteurs, et est requis pour le développement normal de la rétine. Nous avons également démontré que l’oncogène Bmi1 est requis dans les neurones pour empêcher l’apoptose et l’induction d’un programme de vieillissement prématuré, causé par une baisse des défenses anti-oxydantes. Nous avons observé dans les neurones Bmi1-/- une augmentation des niveaux de p53, de la concentration des ROS et de la sensibilité aux agents neurotoxiques. Nous avons démontré ainsi que Bmi1 contrôle les défenses anti-oxydantes dans les neurones en réprimant l’activité pro-oxydante de p53. Dans les neurones Bmi1-/-, p53 provoque la répression des gènes anti-oxydants, induisant une augmentation des niveaux de ROS. Ces résultats démontrent pour la première fois que Bmi1 joue un rôle critique dans la survie et le processus de vieillissement neuronal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les astrocytes sont des cellules gliales présentes dans le système nerveux central, qui exercent de nombreuses fonctions physiologiques essentielles et sont impliquées dans la réponse aux lésions et dans plusieurs pathologies du cerveau. Les astrocytes sont générés par les cellules de la glie radiale, les précurseurs communs de la plupart des cellules neuronales et gliales du cerveau, après le début de la production des neurones. Le passage de la neurogenèse à la gliogenèse est le résultat de mécanismes moléculaires complexes induits par des signaux intrinsèques et extrinsèques responsables du changement de propriété des précurseurs et de leur spécification. Le gène Pax6 code pour un facteur de transcription hautement conservé, impliqué dans plusieurs aspects du développement du système nerveux central, tels que la régionalisation et la neurogenèse. Il est exprimé à partir des stades les plus précoces dans les cellules neuroépithéliales (les cellules souches neurales) et dans la glie radiale, dérivant de la différenciation de ces cellules. L’objectif de cette étude est d’analyser le rôle de Pax6 dans la différenciation et dans le développement des astrocytes. À travers l’utilisation d’un modèle murin mutant nul pour Pax6, nous avons obtenu des résultats suggérant que la suppression de ce gène cause l'augmentation de la prolifération et de la capacité d'auto-renouvellement des cellules souches neurales embryonnaires. In vitro, les cellules mutantes prolifèrent de façon aberrante et sous-expriment les gènes p57Kip2, p16Ink4a, p19Arf et p21Cip1, qui inhibent la progression du le cycle cellulaire. De plus, Pax6 promeut la différenciation astrocytaire des cellules souches neurales embryonnaires et est requis pour la différenciation des astrocytes dans la moëlle épinière. Les mutants nuls pour Pax6 meurent après la naissance à cause de graves défauts développementaux dus aux fonctions essentielles de ce gène dans le développement embryonnaire de plusieurs organes. En utilisant un modèle murin conditionnel basé sur le système CRE/ loxP (hGFAP-CRE/ Pax6flox/flox) qui présente l’inactivation de Pax6 dans les cellules de la glie radiale, viable après la naissance, nous avons montré que Pax6 est impliqué dans la maturation et dans le développement post-natal des astrocytes. Le cortex cérébral des souris mutantes conditionnelles ne présente pas d’astrocytes matures à l’âge de 16 jours et une très faible quantité d’astrocytes immatures à l’âge de trois mois, suggérant que Pax6 promeut la différenciation et la maturation des astrocytes. De plus, Pax6 semble jouer un rôle même dans le processus de différenciation et de maturation de cellules gliales rétiniennes. L’étude des gènes et des mécanismes moléculaires impliqués dans la génération des astrocytes est crucial pour mieux comprendre le rôle physiologique et les altérations pathologiques des ces cellules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des traitements est la cause première de la récurrence de cette tumeur. Une meilleure compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également essentielle au maintien de différentes populations de cellules souches normales et cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM. La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin (BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1 mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa surexpression induit plutôt une augmentation de ces mécanismes et procure une radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM. Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.