983 resultados para Authigenic minerals


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7-14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in delta C-13 (-33.85 parts per thousand to -39.53 parts per thousand Peedee Belemnite (PDB)) and were enriched in delta O-18 (5.16-5.60 parts per thousand PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched O-18 levels. Furthermore, the strongly depleted delta C-13 values (-60.7 parts per thousand to -61.6 parts per thousand PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chemical and isotopic compositions of oceanic biogenic and authigenic minerals contain invaluable information on the evolution of seawater, hence on the history of interaction between tectonics, climate, ocean circulation, and the evolution of life. Important advances and greater understanding of (a) key minor and trace element cycles with various residence times, (b) isotopic sources and sinks and fractionation behaviors, and (c) potential diagenetic problems, as well as developments in high-precision instrumentation, recently have been achieved. These advances provided new compelling evidence that neither gradualism nor uniformitarianism can explain many of the new important discoveries obtained from the chemistry and isotopic compositions of oceanic minerals. Presently, the best-developed geochemical proxies in biogenic carbonates are 18O/16O and Sr/Ca ratios (possibly Mg/Ca) for temperature; 87Sr/86Sr for input sources, Cd/Ca and Ba/Ca ratios for phosphate and alkalinity concentrations, respectively, thus also for ocean circulation; 13C/12C for ocean productivity; B isotopes for seawater pH;, U, Th isotopes, and 14C for dating; and Sr and Mn concentrations for diagenesis. The oceanic authigenic minerals most widely used for chemical paleoceanography are barite, evaporite sulfates, and hydrogenous ferromanganese nodules. Marine barite is an effective alternative monitor of seawater 87Sr/86Sr, especially where carbonates are diagenetically altered or absent. It also provides a high-resolution record of seawater sulfate S isotopes, (evaporite sulfates only carry an episodic record), with new insights on factors affecting the S and C cycles and atmospheric oxygen. High-resolution studies of Sr, Nd, and Pb isotopes of well-dated ferromanganese nodules contain invaluable records on climate driven changes in oceanic circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter reviews green grains from the shelf of French Guiana as a regional example of sedimentologic process occurring on the whole stable continental margin from the Amazon to the Orinoco River. Green grains have been observed and analyzed off the Orinoco delta and on the continental shelf of Surinam. These green grains were identified as “chamosite” and “glauconite.” The muddy coast of French Guiana is generally very flat and occupied by wet swamps and mangrove as a result of the equatorial climate. Most green grains on the continental shelf represent the verdine facies. Green grains are ubiquitous on the shelf and top of the slope off French Guiana. Two sedimentological facies exist: glaucony deeper than 150 m and verdine at shallower depths. The verdine facies has mainly developed from mineral debris and especially chloritized biotite. Carbonate bioclasts and faecal pellets are also utilized. The mica flakes were never wholly replaced by authigenic clay and the phenomenon leads to mixed grains where authigenic and substrate remains are recognizable. Carbonate substrates lead to mainly clay pure green grains becasue the initial carbonate has been dissolved. The formation of verdine can be located in a general marine environment at a comparatively warm sea-water temperature and at a depth probably shallower than 60 m.