907 resultados para Australian rainforest
Resumo:
Lamington National Park in Queensland, Australia is noted for its rainforest and is part of Australia’s fourteen World Heritage listed properties but no systematic study has been done of the importance of birds to its visitors. This study rectifies this situation. It is based on data from survey forms handed to visitors at an important site in this park and completed by visitors following their visit. This yielded 622 useable replies. These enabled us to establish the comparative importance of birds as an attraction to this site. Furthermore, logit regression is used to analyze and to identify factors that increase the likelihood of a visitor saying that birds are an important attraction. In addition, the relative importance to visitors of various attributes of birds at this site is established. These attributes include hearing birds, diversity of birds, seeing lots of birds, presence of rare birds, presence of brightly colored birds and physical contact with birds. Logit regression analysis is used to isolate independent variables that increase or decrease the likelihood that visitors find diversity of birds, brightly colored birds or physical contact with birds at this site to be important. For example, factors such as the level of education of visitors, their gender, knowledge of birds and conservation attitudes are statistically significant influences.
Resumo:
Lamington National Park in Queensland, Australia is noted for its rainforest and is part of the World Heritage listed property but prior to this work, no systematic study has been done of the importance of birds to its visitors. This study is based on data from survey forms handed to visitors at an important site in the park and completed by visitors following their visit. It yielded 622 useable responses. These enabled us to establish the comparative importance of birds as an attraction to this site for this sample of visitors. Furthermore, logit regression is used to target analysis and to identify factors that increase the likelihood of a visitor saying that birds are an important attraction. In addition, the relative importance to visitors of various attributes of birds at this site is established. These attributes include hearing birds, diversity of birds, seeing lots of birds, presence of rare birds, presence of brightly coloured birds and physical contact with birds. Logit regression analysis is used to isolate independent variables that increase or decrease the likelihood that visitors find diversity of birds, brightly coloured birds or physical contact with birds at this site to be important. For example, factors such as the level of education of visitors, their gender, knowledge of birds and conservation attitudes and statistically significant influences. As a result of the analysis potential conflicts between different types of park visitors in relation to human interaction with birds are identified. Some potential ecological implications of human interactions with birds are modelled and discussed, and their economic conservation and biodiversity consequences are considered
Resumo:
Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.
Resumo:
To explore the evolutionary consequences of climate-induced fluctuations in distribution of rainforest habitat we contrasted demographic histories of divergence among three lineages of Australian rainforest endemic skinks. The red-throated rainbow skink, Carlia rubrigularis, consists of morphologically indistinguishable northern and southern mitochondrial DNA (mtDNA) lineages that are partially reproductively isolated at their parapatric boundary. The third lineage (C. rhomboidalis) inhabits rainforests just to the south of C. rubrigularis, has blue, rather than red-throated males, and for mtDNA is more closely related to southern C. rubrigularis than is northern C. rubrigularis. Multigene coalescent analyses supported more recent divergence between morphologically distinct lineages than between morphologically conservative lineages. There was effectively no migration and therefore stronger isolation between southern C. rubrigularis and C. rhomboidalis, and low unidirectional migration between morphologically conservative lineages of C. rubrigularis. We found little or no evidence for strong differences in effective population size, and hence different contributions of genetic drift in the demographic history of the three lineages. Overall the results suggest contrasting responses to long-term fluctuations in rainforest habitats, leading to varying opportunities for speciation.
Resumo:
Thirty-three microsatellite loci were isolated for the Australian rainforest tree Macadamia integrifolia. Genotyping across a test panel of 43 commercial cultivars generated an average polymorphic information content of 0.480. Five loci showed no polymorphism across cultivars. Significant linkage disequilibrium was detected in 10 pairwise comparisons, including two pairs of loci identified from the same clone sequence. The 33 microsatellite loci represent a significant tool for genome mapping and population genetic studies.
Resumo:
Syzygium anisatum (formerly Backhousia anisata and Anetholea anisata) is an Australian rainforest tree with leaves that produce an essential oil (EO) that has the characteristic aroma of aniseed. It is referred to as aniseed myrtle or anise myrtle in the trade and the fresh and dried leaves of this plant are used as a herb in culinary applications. The EO is extracted by steam distillation of the leaves and the major aromatic volatile compound is anethole. The EO has broad spectrum antimicrobial activity but is more effective against bacteria than fungi. Indigenous Australians have used anise myrtle for its medicinal values and in recent times it has been used as a flavoring agent by the food and beverage industry. This chapter covers the use of anise myrtle EO in food and agricultural applications, botanical aspects, and chemical composition.
Resumo:
This study examines the level and pattern of endemism among 274 flightless rainforest insects found in the Wet Tropics region of Australia. Endemism is measured at two nested scales: (1) those confined to the Wet Tropics, termed 'regional endemics'; and (2) the subset of those species confined to a single subregion of the Wet Tropics, termed 'subregional endemics'. Fifty per cent of the regional endemic flightless insects are also subregional endemics compared with 15% of the known regional endemic vertebrates. The four subregions with the most endemic flightless insect species are the uplands of Mt Finnigan, Carbine, Bellenden-Ker/Bartle Frere and Atherton. Multiple regression suggests that the combination of rainforest area and shape explain the most variance (R-2 = 0.603) in the numbers of species of regional endemic insects. However, subregional endemism is not closely correlated with the size or shape of the subregions in which they occur, or a combination of these factors. Candidate refugial and recolonised subregions are identified, and are consistent with data from palaeoclimatic models and refugia identified using other taxa. We group upland subregions into larger areas of endemism using parsimony analysis of endemism. These groupings are consistent with our understanding of the history of the Wet Tropics rainforests.
Resumo:
In order to investigate population history and demography in skinks endemic to the wet tropics of Australia, multiple nuclear DNA markers were sought. The utility of 72 primers (including 63 published intron-spanning 'CATS' primers) was tested.. Seven loci were characterized and shown to be single copy by single-strand conformation polymorphism analysis. Primers to five nuclear loci were developed, four with utility in skinks and three with utility in frogs. These observations extend the available information on intron-spanning primers for amphibians and reptiles.
Resumo:
A cyanogenic glycoside -6'-O-galloylsambunigrin - has been isolated from the foliage of the Australian tropical rainforest tree species Elaeocarpus sericopetalus F. Muell. (Elaeocarpaceae). This is the first formal characterisation of a cyanogenic constituent in the Elaeocarpaceae family, and only the second in the order Malvales. 6'-O-galloylsambunigrin was identified as the principal glycoside, accounting for 91% of total cyanogen in a leaf methanol extract. Preliminary analyses indicated that the remaining cyanogen content may comprise small quantities of sambunigrin, as well as di- and tri-gallates of sambunigrin. E. sericopetalus was found to have foliar concentrations of cyanogenic glycosides among the highest reported for tree leaves, up to 5.2 mg CN g(-1) dry wt. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Soluble organic nitrogen, including protein and amino acids, was found to be a ubiquitous form of soil N in diverse Australian environments. Fine roots of species representative of these environments were found to be active in the metabolism of glycine. The ability to incorporate [N-15]glycine was widespread among plant species from subantarctic to tropical communities. In species from subantarctic herbfield, subtropical coral cay, subtropical rainforest and wet heathland, [N-15]glycine incorporation ranged from 26 to 45% of (NH4+)-N-15 incorporation and was 2- to 3-fold greater than (NO3-)-N-15 incorporation. Most semiarid mulga and tropical savanna woodland species incorporated [N-15]glycine and (NO3-)-N-15 in similar amounts, 18-26% of (NH4+)-N-15 incorporation. We conclude that the potential to utilise amino acids as N sources is of widespread occurrence in plant communities and is not restricted to those from low temperature regimes or where N mineralisation is limited. Seedlings of Hakea (Proteaceae) were shown to metabolise glycine, with a rapid transfer of N-15 from glycine to serine and other amino compounds. The ability to take up and metabolise glycine was unaffected by the presence of equimolar concentrations of NO3- and NH4+. Isonicotinic acid hydrazide (INH) did not inhibit the transfer of N-15-label from glycine to serine indicating that serine hydroxymethyltransferase was not active in glycine catabolism. In contrast aminooxyacetate (AOA) strongly inhibited transfer of N-15 from glycine to serine and labelling of other amino compounds, suggesting that glycine is metabolised in roots and cluster roots of Hakea via an aminotransferase.
Resumo:
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian and zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hither-to neglected monsoonal tropics.