901 resultados para Auditory neuropathy
Resumo:
This paper discusses auditory neuropathy (AN) and auditory dys-sychrony (AD), and means of testing and diagnosis.
Resumo:
The OTOF gene encoding otoferlin is associated with auditory neuropathy (AN), a type of non-syndromic deafness. We investigated the contribution of OTOF mutations to AN and to non-syndromic recessive deafness in Brazil. A test for the Q829X mutation was carried out on a sample of 342 unrelated individuals with non-syndromic hearing loss, but none presented this mutation. We selected 48 cases suggestive of autosomal recessive inheritance, plus four familial and seven isolated cases of AN, for genotyping of five microsatellite markers linked to the OTOF gene. The haplotype analysis showed compatibility with linkage in 11 families (including the four families with AN). Samples of the 11 probands from these families and from seven isolated cases of AN were selected for an exon-by-exon screening for mutations in the OTOF gene. Ten different pathogenic variants were detected, among which six are novel. Among the 52 pedigrees with autosomal recessive inheritance (including four familial cases of AN), mutations were identified in 4 (7.7%). Among the 11 probands with AN, seven had at least one pathogenic mutation in the OTOF gene. Mutations in the OTOF gene are frequent causes of AN in Brazil and our results confirm that they are spread worldwide. Journal of Human Genetics (2009) 54, 382-385; doi: 10.1038/jhg.2009.45; published online 22 May 2009
Resumo:
Objective: To characterize the PI component of long latency auditory evoked potentials (LLAEPs) in cochlear implant users with auditory neuropathy spectrum disorder (ANSD) and determine firstly whether they correlate with speech perception performance and secondly whether they correlate with other variables related to cochlear implant use. Methods: This study was conducted at the Center for Audiological Research at the University of Sao Paulo. The sample included 14 pediatric (4-11 years of age) cochlear implant users with ANSD, of both sexes, with profound prelingual hearing loss. Patients with hypoplasia or agenesis of the auditory nerve were excluded from the study. LLAEPs produced in response to speech stimuli were recorded using a Smart EP USB Jr. system. The subjects' speech perception was evaluated using tests 5 and 6 of the Glendonald Auditory Screening Procedure (GASP). Results: The P-1 component was detected in 12/14 (85.7%) children with ANSD. Latency of the P-1 component correlated with duration of sensorial hearing deprivation (*p = 0.007, r = 0.7278), but not with duration of cochlear implant use. An analysis of groups assigned according to GASP performance (k-means clustering) revealed that aspects of prior central auditory system development reflected in the P-1 component are related to behavioral auditory skills. Conclusions: In children with ANSD using cochlear implants, the P-1 component can serve as a marker of central auditory cortical development and a predictor of the implanted child's speech perception performance. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.
Resumo:
OBJECTIVE: Cochlear implantation (CI) is a standard treatment for severe-profound sensorineural hearing loss (SNHL). However, consensus has yet to be reached on its effectiveness for hearing loss caused by auditory neuropathy spectrum disorder (ANSD). This review aims to summarize and synthesize current evidence of the effectiveness of CI in improving speech recognition in children with ANSD. DESIGN: Systematic review. STUDY SAMPLE: A total of 27 studies from an initial selection of 237. RESULTS: All selected studies were observational in design, including case studies, cohort studies, and comparisons between children with ANSD and SNHL. Most children with ANSD achieved open-set speech recognition with their CI. Speech recognition ability was found to be equivalent in CI users (who previously performed poorly with hearing aids) and hearing-aid users. Outcomes following CI generally appeared similar in children with ANSD and SNHL. Assessment of study quality, however, suggested substantial methodological concerns, particularly in relation to issues of bias and confounding, limiting the robustness of any conclusions around effectiveness. CONCLUSIONS: Currently available evidence is compatible with favourable outcomes from CI in children with ANSD. However, this evidence is weak. Stronger evidence is needed to support cost-effective clinical policy and practice in this area.
Resumo:
La neuropatía auditiva es un desorden caracterizado por hipoacusia neurosensorial y ausencia de potenciales evocados auditivos de tallo cerebral, con otoemisiones acústicas presentes, encontrando una pérdida de la audición en presencia de función coclear, siendo esta sugestiva anomalía de una alteración de la sincronía neural. La neuropatía presenta una baja incidencia en niños con funciones auditivas normales y una incidencia variable en niños con hipoacusias severas, el manejo actual de la neuropatía va encaminado a la rehabilitación auditiva, usando sistemas de amplificación (audífonos o implantes cocleares). Se realizo un estudio de corte transversal con el objetivo de comparar la respuesta en niños con neuropatía auditiva y niños con hipoacusia neurosensorial en cuanto a la ganancia funcional con sistemas de amplificación. Fueron tomados 4 niños con diagnostico confirmado de la patología y se compararon con un grupo control de 16 niños con hipoacusias neurosensoriales de otras etiologías, se comparo el valor de la ganancia funcional con audífono y con implante coclear, obtenido de las audiometrías. La ganancia funciona global con ambos sistemas de amplificación no muestra diferencias significativas comparados los dos grupos, comparando el grupo de pacientes con neuropatía auditiva se encontraron diferencias significativas entre audífono e implante para las frecuencias medias y agudas. Se puede concluir que el audífono en pacientes con neuropatía auditiva es el sistema de amplificación que ofrece mejores valores de ganancia funcional, aun mejor que el implante coclear.
Resumo:
Objectives: We performed a prospective clinical study of the cochleovestibular symptoms and the risk cofactors and characteristics of hearing loss in patients with type 1 diabetes.Methods: Group I consisted of 40 patients with type I diabetes, and group 2 consisted of 20 control subjects without diabetes. All participants answered a questionnaire, and their medical records were reviewed. They also were submitted to otorhinolaryngological examinations and to auditory tests (pure tone audiometry and acoustic immitance and auditory brain stem response [ABR] tests).Results: Dyslipidemia, hypertension, retinopathy, and diabetic neuropathy were not frequent in the patients of group 1, but incipient nephropathy was present in 47.5% of them. The most frequent cochleovestibular symptoms were tinnitus and hearing loss. Sensorineural hearing loss was found in 4 patients of group I and was predominantly bilateral, symmetric, and affecting the high frequencies, coexisting with normal vocal discrimination. These patients had a longer time from diabetes diagnosis and had poor glycemia control. A delay of ABR interpeak latency I-III was observed in 11.25% of the group I ears. All patients of group 2 presented normal audiograms and ABR tests.Conclusions: In group 1, the most frequent cochleovestibular symptoms were tinnitus and hearing loss. The sensorineural hearing loss was mild, symmetric, and predominantly high-frequency. A delay of ABR interpeak latencies was detected in the patients of group I who had normal audiometric thresholds.
Resumo:
ABSTRACT: Neuropathy is a cause of significant disability in patients with Fabry disease, yet its diagnosis is difficult. In this study we compared the novel noninvasive techniques of corneal confocal microscopy (CCM) to quantify small-fiber pathology, and non-contact corneal esthesiometry (NCCA) to quantify loss of corneal sensation, with established tests of neuropathy in patients with Fabry disease. Ten heterozygous females with Fabry disease not on enzyme replacement therapy (ERT), 6 heterozygous females, 6 hemizygous males on ERT, and 14 age-matched, healthy volunteers underwent detailed quantification of neuropathic symptoms, neurological deficits, neurophysiology, quantitative sensory testing (QST), NCCA, and CCM. All patients with Fabry disease had significant neuropathic symptoms and an elevated Mainz score. Peroneal nerve amplitude was reduced in all patients and vibration perception threshold was elevated in both male and female patients on ERT. Cold sensation (CS) threshold was significantly reduced in both male and female patients on ERT (P < 0.02), but warm sensation (WS)and heat-induced pain (HIP) were only significantly increased in males onERT (P<0.01). However, corneal sensation assessed withNCCAwas significantly reduced in female (P < 0.02) and male (P < 0.04) patients on ERT compared with control subjects. According to CCM, corneal nerve fiber and branch density was significantly reduced in female (P < 0.03) and male (P < 0.02) patients on ERT compared with control subjects. Furthermore, the severity of neuropathic symptoms and the neurological component of the Mainz Severity Score Index correlated significantly with QSTand CCM. This study shows that CCM and NCCA provide a novel means to detect early nerve fiber damage and dysfunction, respectively, in patients with Fabry disease.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most debilitating complications of diabetes. DPN is a major cause of foot ulceration and lower limb amputation. Early diagnosis and management is a key factor in reducing morbidity and mortality. Current techniques for clinical assessment of DPN are relatively insensitive for detecting early disease or involve invasive procedures such as skin biopsies. There is a need for less painful, non-invasive and safe evaluation methods. Eye care professionals already play an important role in the management of diabetic retinopathy; however recent studies have indicated that the eye may also be an important site for the diagnosis and monitoring of neuropathy. Corneal nerve morphology has been shown to be a promising marker of diabetic neuropathy occurring elsewhere in the body, and emerging evidence tentatively suggests that retinal anatomical markers and a range of functional visual indicators could similarly provide useful information regarding neural damage in diabetes – although this line of research is, as yet, less well established. This review outlines the growing body of evidence supporting a potential diagnostic role for retinal structure and visual functional markers in the diagnosis and monitoring of peripheral neuropathy in diabetes.
Resumo:
Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
Purpose. The objective of this study was to explore the discriminative capacity of non-contact corneal esthesiometry (NCCE) when compared with the neuropathy disability score (NDS) score—a validated, standard method of diagnosing clinically significant diabetic neuropathy. Methods. Eighty-one participants with type 2 diabetes, no history of ocular disease, trauma, or surgery and no history of systemic disease that may affect the cornea were enrolled. Participants were ineligible if there was history of neuropathy due to non-diabetic cause or current diabetic foot ulcer or infection. Corneal sensitivity threshold was measured on the eye of dominant hand side at a distance of 10 mm from the center of the cornea using a stimulus duration of 0.9 s. The NDS was measured producing a score ranging from 0 to 10. To determine the optimal cutoff point of corneal sensitivity that identified the presence of neuropathy (diagnosed by NDS), the Youden index and “closest-to-(0,1)” criteria were used. Results. The receiver-operator characteristic curve for NCCE for the presence of neuropathy (NDS ≥3) had an area under the curve of 0.73 (p = 0.001) and, for the presence of moderate neuropathy (NDS ≥6), area of 0.71 (p = 0.003). By using the Youden index, for an NDS ≥3, the sensitivity of NCCE was 70% and specificity was 75%, and a corneal sensitivity threshold of 0.66 mbar or higher indicated the presence of neuropathy. When NDS ≥6 (indicating risk of foot ulceration) was applied, the sensitivity was 52% with a specificity of 85%. Conclusions. NCCE is a sensitive test for the diagnosis of minimal and more advanced diabetic neuropathy and may serve as a useful surrogate marker for diabetic and perhaps other neuropathies.