945 resultados para Audio-visual speaker recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People possess different sensory modalities to detect, interpret, and efficiently act upon various events in a complex and dynamic environment (Fetsch, DeAngelis, & Angelaki, 2013). Much empirical work has been done to understand the interplay of modalities (e.g. audio-visual interactions, see Calvert, Spence, & Stein, 2004). On the one hand, integration of multimodal input as a functional principle of the brain enables the versatile and coherent perception of the environment (Lewkowicz & Ghazanfar, 2009). On the other hand, sensory integration does not necessarily mean that input from modalities is always weighted equally (Ernst, 2008). Rather, when two or more modalities are stimulated concurrently, one often finds one modality dominating over another. Study 1 and 2 of the dissertation addressed the developmental trajectory of sensory dominance. In both studies, 6-year-olds, 9-year-olds, and adults were tested in order to examine sensory (audio-visual) dominance across different age groups. In Study 3, sensory dominance was put into an applied context by examining verbal and visual overshadowing effects among 4- to 6-year olds performing a face recognition task. The results of Study 1 and Study 2 support default auditory dominance in young children as proposed by Napolitano and Sloutsky (2004) that persists up to 6 years of age. For 9-year-olds, results on privileged modality processing were inconsistent. Whereas visual dominance was revealed in Study 1, privileged auditory processing was revealed in Study 2. Among adults, a visual dominance was observed in Study 1, which has also been demonstrated in preceding studies (see Spence, Parise, & Chen, 2012). No sensory dominance was revealed in Study 2 for adults. Potential explanations are discussed. Study 3 referred to verbal and visual overshadowing effects in 4- to 6-year-olds. The aim was to examine whether verbalization (i.e., verbally describing a previously seen face), or visualization (i.e., drawing the seen face) might affect later face recognition. No effect of visualization on recognition accuracy was revealed. As opposed to a verbal overshadowing effect, a verbal facilitation effect occurred. Moreover, verbal intelligence was a significant predictor for recognition accuracy in the verbalization group but not in the control group. This suggests that strengthening verbal intelligence in children can pay off in non-verbal domains as well, which might have educational implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work examining context effects in children has been limited to semantic context. The current research examined the effects of grammatical priming of word-naming in fourth-grade children. In Experiment 1, children named both inflected and uninflected noun and verb target words faster when they were preceded by grammatically constraining primes than when they were preceded by neutral primes. Experiment 1 used a long stimulus onset asynchrony (SOA) interval of 750 msec. Experiment 2 replicated the grammatical priming effect at two SOA intervals (400 msec and 700 msec), suggesting that the grammatical priming effect does not reflect the operation of any gross strategic effects directly attributable to the long SOA interval employed in Experiment 1. Grammatical context appears to facilitate target word naming by constraining target word class. Further work is required to elucidate the loci of this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speaker Recognition, Speaker Verification, Sparse Kernel Logistic Regression, Support Vector Machine

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation but the testing signals present some mismatch with the input signal level (saturations). The experimental results for speaker recognition shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone, and for speaker identification can reduce the minimum detection cost function with saturated test sentences from 6.42% to 4.15%, while the results with clean speech (without saturation) is 5.74% for one microphone and 7.02% for the other one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation but the testing signals present some mismatch with the input signal level (saturations). The experimental results shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, three main questions were addressed using event-related potentials (ERPs): (1) the timing of lexical semantic access, (2) the influence of "top-down" processes on visual word processing, and (3) the influence of "bottom-up" factors on visual word processing. The timing of lexical semantic access was investigated in two studies using different designs. In Study 1,14 participants completed two tasks: a standard lexical decision (LD) task which required a word/nonword decision to each target stimulus, and a semantically primed version (LS) of it using the same category of words (e.g., animal) within each block following which participants made a category judgment. In Study 2, another 12 participants performed a standard semantic priming task, where target stimulus words (e.g., nurse) could be either semantically related or unrelated to their primes (e.g., doctor, tree) but the order of presentation was randomized. We found evidence in both ERP studies that lexical semantic access might occur early within the first 200 ms (at about 170 ms for Study 1 and at about 160 ms for Study 2). Our results were consistent with more recent ERP and eye-tracking studies and are in contrast with the traditional research focus on the N400 component. "Top-down" processes, such as a person's expectation and strategic decisions, were possible in Study 1 because of the blocked design, but they were not for Study 2 with a randomized design. Comparing results from two studies, we found that visual word processing could be affected by a person's expectation and the effect occurred early at a sensory/perceptual stage: a semantic task effect in the PI component at about 100 ms in the ERP was found in Study 1 , but not in Study 2. Furthermore, we found that such "top-down" influence on visual word processing might be mediated through separate mechanisms depending on whether the stimulus was a word or a nonword. "Bottom-up" factors involve inherent characteristics of particular words, such as bigram frequency (the total frequency of two-letter combinations of a word), word frequency (the frequency of the written form of a word), and neighborhood density (the number of words that can be generated by changing one letter of an original word or nonword). A bigram frequency effect was found when comparing the results from Studies 1 and 2, but it was examined more closely in Study 3. Fourteen participants performed a similar standard lexical decision task but the words and nonwords were selected systematically to provide a greater range in the aforementioned factors. As a result, a total of 18 word conditions were created with 18 nonword conditions matched on neighborhood density and neighborhood frequency. Using multiple regression analyses, we foimd that the PI amplitude was significantly related to bigram frequency for both words and nonwords, consistent with results from Studies 1 and 2. In addition, word frequency and neighborhood frequency were also able to influence the PI amplitude separately for words and for nonwords and there appeared to be a spatial dissociation between the two effects: for words, the word frequency effect in PI was found at the left electrode site; for nonwords, the neighborhood frequency effect in PI was fovind at the right elecfrode site. The implications of otir findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report describes a recognition system called GROPER, which performs grouping by using distance and relative orientation constraints that estimate the likelihood of different edges in an image coming from the same object. The thesis presents both a theoretical analysis of the grouping problem and a practical implementation of a grouping system. GROPER also uses an indexing module to allow it to make use of knowledge of different objects, any of which might appear in an image. We test GROPER by comparing it to a similar recognition system that does not use grouping.