980 resultados para Attribute-based signature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, Wang et al. presented a new construction of attribute-based signature with policy-and-endorsement mechanism. The existential unforgeability of their scheme was claimed to be based on the strong Diffie-Hellman assumption in the random oracle model. Unfortunately, by carefully revisiting the design and security proof of Wang et al.’s scheme, we show that their scheme cannot provide unforgeability, namely, a forger, whose attributes do not satisfy a given signing predicate, can also generate valid signatures. We also point out the flaws in Wang et al.’s proof.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attribute-based signature (ABS) is a novel cryptographic primitive, which can make the signing party sign a message with fine-grained control over identifying information. ABS only reveals the fact that the verified message must be signed by a user with a set of attributes satisfying a predicate. Thus, ABS can hide any identifying information and make fine-grained control on signing. Presently, many attribute-based signature schemes have been proposed, but most of them are not very efficient. Maji et al. recently presented a complete definition and construction about ABS for monotone predicates and showed three instantiations under their framework for ABS. Although the most practical one of their instantiations is efficient, the instantiation is constructed in the generic group model and has been proved to be insecure. Then, Okamoto et al. proposed an attribute-based signature scheme in the standard model, which can support generalized non-monotone predicates over access structure. However, their scheme is not efficient in practice. In this paper, we present a framework for ABS and show a detailed security model for ABS. Under our framework, we present an attribute-based signature scheme for monotone predicates in the standard model, where we choose the Waters’ signature scheme as the prototype of our attribute-based signature scheme. Compared with the Maji’s scheme in the generic group model, the proposed scheme is constructed in the standard model. Furthermore, compared with the Okamoto’s scheme, the proposed scheme is more efficient by decreasing the computation cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based signatures (ABS for short) allow an entity to sign messages with a fine-grained control over identity information. The signature attests not to the identity of the individual who endorsed a message, but instead to a claim regarding the attributes he/she holds. ABS has been well investigated since its introduction but little has been done on the revocation in ABS. In this paper, we divide ABS revocation as fine-grained attribute-revocation and coarse-grained user-revocation. The latter is the focus of this paper, and we present a concrete design-to address the issue of coarse-grained user-revocation in ABS without the need of any other third parties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attribute-based signature (ABS) enables users to sign messages over attributes without revealing any information other than the fact that they have attested to the messages. However, heavy computational cost is required during signing in existing work of ABS, which grows linearly with the size of the predicate formula. As a result, this presents a significant challenge for resource-constrained devices (such as mobile devices or RFID tags) to perform such heavy computations independently. Aiming at tackling the challenge above, we first propose and formalize a new paradigm called Outsourced ABS, i.e., OABS, in which the computational overhead at user side is greatly reduced through outsourcing intensive computations to an untrusted signing-cloud service provider (S-CSP). Furthermore, we apply this novel paradigm to existing ABS schemes to reduce the complexity. As a result, we present two concrete OABS schemes: i) in the first OABS scheme, the number of exponentiations involving in signing is reduced from O(d) to O(1) (nearly three), where d is the upper bound of threshold value defined in the predicate; ii) our second scheme is built on Herranz et al.'s construction with constant-size signatures. The number of exponentiations in signing is reduced from O(d2) to O(d) and the communication overhead is O(1). Security analysis demonstrates that both OABS schemes are secure in terms of the unforgeability and attribute-signer privacy definitions specified in the proposed security model. Finally, to allow for high efficiency and flexibility, we discuss extensions of OABS and show how to achieve accountability as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the concept of attribute-based authenticated key exchange (AB-AKE) within the framework of ciphertext policy attribute-based systems. A notion of AKE-security for AB-AKE is presented based on the security models for group key exchange protocols and also taking into account the security requirements generally considered in the ciphertext policy attribute-based setting. We also extend the paradigm of hybrid encryption to the ciphertext policy attribute-based encryption schemes. A new primitive called encapsulation policy attribute-based key encapsulation mechanism (EP-AB-KEM) is introduced and a notion of chosen ciphertext security is de�ned for EP-AB-KEMs. We propose an EP-AB-KEM from an existing attribute-based encryption scheme and show that it achieves chosen ciphertext security in the generic group and random oracle models. We present a generic one-round AB-AKE protocol that satis�es our AKE-security notion. The protocol is generically constructed from any EP-AB-KEM that satis�es chosen ciphertext security. Instantiating the generic AB-AKE protocol with our EP-AB-KEM will result in a concrete one-round AB-AKE protocol also secure in the generic group and random oracle models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a broad lattice manipulation technique for expressive cryptography, and use it to realize functional encryption for access structures from post-quantum hardness assumptions. Specifically, we build an efficient key-policy attribute-based encryption scheme, and prove its security in the selective sense from learning-with-errors intractability in the standard model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different economic valuation methodologies can be used to value the non-market benefits of an agri-environmental scheme. In particular, the non-market value can be examined by assessing the public's willingness to pay for the policy outputs as a whole or by modelling the preferences of society for the component attributes of the rural landscape that result from the implementation of the policy. In this article we examine whether the welfare values estimated for an agri-environmental policy are significantly different between an holistic valuation methodology (using contingent valuation) and an attribute-based valuation methodology (choice experiment). It is argued that the valuation methodology chosen should be based on whether or not the overall objective is the valuation of the agri-environment policy package in its entirety or the valuation of each of the policy's distinct environmental outputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Eurocrypt 2003, Gentry introduced the notion of certificate-based encryption. The merit of certificate-based encryption lies in the following features: (1) providing more efficient public-key infrastructure (PKI) that requires less infrastructure, (2) solving the certificate revocation problem, and (3) eliminating third-party queries in the traditional PKI. In addition, it also solves the inherent key escrow problem in the identity-based cryptography. In this paper, we first introduce a new attack called the “Key Replacement Attack” in the certificate-based system and refine the security model of certificate-based signature. We show that the certificate-based signature scheme presented by Kang, Park and Hahn in CT-RSA 2004 is insecure against key replacement attacks. We then propose a new certificate-based signature scheme, which is shown to be existentially unforgeable against adaptive chosen message attacks under the computational Diffie-Hellman assumption in the random oracle model. Compared with the certificate-based signature scheme in CT-RSA 2004, our scheme enjoys shorter signature length and less operation cost, and hence, our scheme outperforms the existing schemes in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attribute-Based Signatures (ABS) is a versatile primitive which allows an entity to sign a message with fine-grained control over identifying information. A valid ABS only attests to the fact that “A single user, whose attributes satisfy the predicate, has endorsed the message”. While ABS has been well investigated since its introduction, it is unfortunate that key exposure–an inherent weakness of digital signatures–has never been formally studied in the scenario of ABS. We fill this gap by proposing a new notion called forward secure ABS, its formal security models and a generic (also the first) design based on well established crypto primitives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of identity-based signature scheme (IBS) has been proven useful in some scenarios where relying on the validity of the certificates is impractical. Nevertheless, one remaining inherent problem that hinders the adoption of this cryptographic primitive in practice is due to the key escrow problem, where the private key generator (PKG) can always impersonate the user in the system. In 2010, Yuen et al. proposed the notion of IBS that does not suffer from the key escrow problem. Nevertheless, their approach relies on the judge who will later blame the malicious PKG when such a dispute occurs, assuming that the PKG is willing to collaborate. Although the approach is attractive, but unfortunately it is impractical since the malicious PKG may just refuse to collaborate when such an incident happens. In this paper, we propose a new escrow-free IBS, which enjoys three main advantages, namely key escrow free, practical and very efficient. We present a generic intuition as well as an efficient instantiation. In our approach, there is no judge involvement required, as the public can determine the malicious behaviour of PKG when such an incident happens. Further, the signature size of our instantiation is only two group elements, which outperforms the existing constructions in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 FEBRUARY SPECIAL ISSUE : with selected papers from the 23rd Brazilian Symposium on Software Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attribute-Based Encryption (ABE) is a promising cryptographic primitive which significantly enhances the versatility of access control mechanisms. Due to the high expressiveness of ABE policies, the computational complexities of ABE key-issuing and decryption are getting prohibitively high. Despite that the existing Outsourced ABE solutions are able to offload some intensive computing tasks to a third party, the verifiability of results returned from the third party has yet to be addressed. Aiming at tackling the challenge above, we propose a new Secure Outsourced ABE system, which supports both secure outsourced key-issuing and decryption. Our new method offloads all access policy and attribute related operations in the key-issuing process or decryption to a Key Generation Service Provider (KGSP) and a Decryption Service Provider (DSP), respectively, leaving only a constant number of simple operations for the attribute authority and eligible users to perform locally. In addition, for the first time, we propose an outsourced ABE construction which provides checkability of the outsourced computation results in an efficient way. Extensive security and performance analysis show that the proposed schemes are proven secure and practical. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide the first description of and security model for authenticated key exchange protocols with predicate-based authentication. In addition to the standard goal of session key security, our security model also provides for credential privacy: a participating party learns nothing more about the other party's credentials than whether they satisfy the given predicate. Our model also encompasses attribute-based key exchange since it is a special case of predicate-based key exchange.---------- We demonstrate how to realize a secure predicate-based key exchange protocol by combining any secure predicate-based signature scheme with the basic Diffie-Hellman key exchange protocol, providing an efficient and simple solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basing signature schemes on strong lattice problems has been a long standing open issue. Today, two families of lattice-based signature schemes are known: the ones based on the hash-and-sign construction of Gentry et al.; and Lyubashevsky’s schemes, which are based on the Fiat-Shamir framework. In this paper we show for the first time how to adapt the schemes of Lyubashevsky to the ring signature setting. In particular we transform the scheme of ASIACRYPT 2009 into a ring signature scheme that provides strong properties of security under the random oracle model. Anonymity is ensured in the sense that signatures of different users are within negligible statistical distance even under full key exposure. In fact, the scheme satisfies a notion which is stronger than the classical full key exposure setting as even if the keypair of the signing user is adversarially chosen, the statistical distance between signatures of different users remains negligible. Considering unforgeability, the best lattice-based ring signature schemes provide either unforgeability against arbitrary chosen subring attacks or insider corruption in log-sized rings. In this paper we present two variants of our scheme. In the basic one, unforgeability is ensured in those two settings. Increasing signature and key sizes by a factor k (typically 80 − 100), we provide a variant in which unforgeability is ensured against insider corruption attacks for arbitrary rings. The technique used is pretty general and can be adapted to other existing schemes.