966 resultados para Attentional Demands
Resumo:
The purpose of this study was to determine the attentional demands of natural and imposed gait, as well as the attentional costs of transitions between the walking and running co-ordination patterns. Seven healthy young men and four healthy young women undertook an auditory probe reaction time task concurrently with self-selected gait (Experiment 1) and imposed walking and running (Experiment 2) at different speeds on a motor-driven treadmill. In Experiment 1, where participants were free to choose their own movement pattern to match the speed of travel of the treadmill, normal gait control was shown to have a significant attentional cost, and hence not be automatic in the classical sense. However, this attentional cost did not differ between the two gait modes or at the transition point. In Experiment 2, where participants were required to maintain specific gait modes regardless of the treadmill speed, the maintenance of walking at speeds normally associated with running was found to have an attentional cost whereas this was not the case for running at normal walking speeds. Collectively the findings support a model of gait control in which the normal switching between gait modes is determined with minimal attention demand and in which it is possible to sustain non-preferred gait modes although, in the case of walking, only at a significant attentional/cognitive cost. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
It has been suggested that the temporal control of rhythmic unimianual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are ail emergent property, whereas for tasks that involve discontinuities timing is ail explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400 ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1 Hz and 1.7 Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Attention defines our mental ability to select and respond to stimuli, internal or external, on the basis of behavioural goals in the presence of competing, behaviourally irrelevant, stimuli. The frontal and parietal cortices are generally agreed to be involved with attentional processing, in what is termed the 'fronto-parietal' network. The left parietal cortex has been seen as the site for temporal attentional processing, whereas the right parietal cortex has been seen as the site for spatial attentional processing. There is much debate about when the modulation of the primary visual cortex occurs, whether it is modulated in the feedforward sweep of processing or modulated by feedback projections from extrastriate and higher cortical areas. MEG and psychophysical measurements were used to look at spatially selective covert attention. Dual-task and cue-based paradigms were used. It was found that the posterior parietal cortex (PPC), in particular the SPL and IPL, was the main site of activation during these experiments, and that the left parietal lobe was activated more strongly than the right parietal lobe throughout. The levels of activation in both parietal and occipital areas were modulated in accordance with attentional demands. It is likely that spatially selective covert attention is dominated by the left parietal lobe, and that this takes the form of the proposed sensory-perceptual lateralization within the parietal lobes. Another form of lateralization is proposed, termed the motor-processing lateralization, the side of dominance being determined by handedness, being reversed in left- relative to right-handers. In terms of the modulation of the primary visual cortex, it was found that it is unlikely that V1 is modulated initially; rather the modulation takes the form of feedback from higher extrastriate and parietal areas. This fits with the idea of preattentive visual processing, a commonly accepted idea which, in itself, prevents the concept of initial modulation of V1.
Resumo:
We recently demonstrated that automatic attention favors the right side of space and, in the present study, we investigated whether voluntary attention also favors this side. Six reaction time experiments were conducted. In each experiment, 12 new 18-25-year-old male right-handed individuals were tested. In Experiments 1, 2, 3 (a, b) and 4 (a, b), tasks with increasing attentional demands were used. In Experiments 1, 2, 3a, and 4a, attention was oriented to one or both sides by means of a central spatially informative visual cue. A left or right side visual target appeared 100, 300, or 500 ms later. Attentional effects were observed in the four experiments. In Experiments 2, 3a and 4a, these effects were greater when the cue indicated the right side than when it indicated the left side (respectively: 16 ± 10 and 44 ± 6 ms, P = 0.015, for stimulus onset asynchrony of 500 ms in Experiment 2; 38 ± 10 and 70 ± 7 ms, P = 0.011, for Experiment 3a, and 23 ± 11 and 61 ± 10 ms, P = 0.009, for Experiment 4a). In Experiments 3b and 4b, the central cue pointed to both sides and was said to be non-relevant for task performance. In these experiments right and left reaction times did not differ. The most conservative interpretation of the present findings is that voluntary attention orienting favors the right side of space, particularly when a difficult task has to be performed.
Resumo:
This study investigated the influence of a concurrent cognitive task on the compensatory stepping response in balance-impaired elders and the attentional demand of the stepping response. Kinetic, kinematic and neuromuscular measures of a forward recovery step were investigated in 15 young adults, 15 healthy elders and 13 balance-impaired elders in a single task (postural recovery only) and dual task (postural recovery and vocal reaction time task) situation. Results revealed that reaction times were longer in all subjects when performed concurrently with a compensatory step, they were longer for a step than an in-place response and longer for balance-impaired older adults compared with young adults. An interesting finding was that the latter group difference may be related to prioritization between the two tasks rather than attentional demand, as the older adults completed the step before the reaction time, whereas the young adults could perform both concurrently. Few differences in step characteristics were found between tasks, with the most notable being a delayed latency and reduced magnitude of the early automatic postural response in healthy and balance-impaired elders with a concurrent task. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Previous research using punctuate reaction time and counting tasks has found that the startle eyeblink reflex is sensitive to attentional demands. The present experiment explored whether startle eyeblink is also modulated during a complex continuous task and is sensitive to different levels of mental workload. Participants (N=14) performed a visual horizontal tracking task either alone (single-task condition) or in combination with a visual gauge monitoring task (multiple-task condition) for three minutes. On some task trials, the startle eyeblink reflex was elicited by a noise burst. Results showed that startle eyeblink was attenuated during both tasks and that the attenuation was greater during the multiple-task condition than during the single-task condition. Subjective ratings, endogenous eyeblink rate, heart period, and heart period variability provided convergent validity of the workload manipulations. The findings suggest that the startle eyeblink is sensitive to the workload demands associated with a continuous visual task. The application of startle eyeblink modulation as a workload metric and the possibility that it may be diagnostic of workload demands in different stimulus modalities is discussed.
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
We recently demonstrated that automatic attention favors the right side of space and, in the present study, we investigated whether voluntary attention also favors this side. Six reaction time experiments were conducted. In each experiment, 12 new 18-25-year-old male right-handed individuals were tested. In Experiments 1, 2, 3 (a, b) and 4 (a, b), tasks with increasing attentional demands were used. In Experiments 1, 2, 3a, and 4a, attention was oriented to one or both sides by means of a central spatially informative visual cue. A left or right side visual target appeared 100, 300, or 500 ms later. Attentional effects were observed in the four experiments. In Experiments 2, 3a and 4a, these effects were greater when the cue indicated the right side than when it indicated the left side (respectively: 16 ± 10 and 44 ± 6 ms, P = 0.015, for stimulus onset asynchrony of 500 ms in Experiment 2; 38 ± 10 and 70 ± 7 ms, P = 0.011, for Experiment 3a, and 23 ± 11 and 61 ± 10 ms, P = 0.009, for Experiment 4a). In Experiments 3b and 4b, the central cue pointed to both sides and was said to be non-relevant for task performance. In these experiments right and left reaction times did not differ. The most conservative interpretation of the present findings is that voluntary attention orienting favors the right side of space, particularly when a difficult task has to be performed.
Resumo:
Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Resumo:
Prospective memory (PM) is a fundamental requirement for independent living which might be prematurely compromised in the neurodegenerative process, namely in mild cognitive impairment (MCI), a typical prodromal Alzheimer's disease (AD) phase. Most encoding manipulations that typically enhance learning in healthy adults are of minimal benefit to AD patients. However, there is some indication that these can display a recall advantage when encoding is accompanied by the physical enactment of the material. The aim of this study was to explore the potential benefits of enactment at encoding and cue-action relatedness on memory for intentions in MCI patients and healthy controls using a behavioral PM experimental paradigm. Method: We report findings examining the influence of enactment at encoding for PM performance in MCI patients and education-matched controls using a laboratory-based PM task with a factorial independent design. Results: PM performance was consistently superior when physical enactment was used at encoding and when target-action pairs were strongly associated. Importantly, these beneficial effects were cumulative and observable across both a healthy and a cognitively impaired lifespan as well as evident in the perceived subjective difficulty in performing the task. Conclusions: The identified beneficial effects of enacted encoding and semantic relatedness have unveiled the potential contribution of this encoding technique to optimize attentional demands through an adaptive allocation of resources strategies. We discuss our findings with respect to their potential impact on developing strategies to improve PM in AD sufferers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study investigated the influence of top-down and bottom-up information on speech perception in complex listening environments. Specifically, the effects of listening to different types of processed speech were examined on intelligibility and on simultaneous visual-motor performance. The goal was to extend the generalizability of results in speech perception to environments outside of the laboratory. The effect of bottom-up information was evaluated with natural, cell phone and synthetic speech. The effect of simultaneous tasks was evaluated with concurrent visual-motor and memory tasks. Earlier works on the perception of speech during simultaneous visual-motor tasks have shown inconsistent results (Choi, 2004; Strayer & Johnston, 2001). In the present experiments, two dual-task paradigms were constructed in order to mimic non-laboratory listening environments. In the first two experiments, an auditory word repetition task was the primary task and a visual-motor task was the secondary task. Participants were presented with different kinds of speech in a background of multi-speaker babble and were asked to repeat the last word of every sentence while doing the simultaneous tracking task. Word accuracy and visual-motor task performance were measured. Taken together, the results of Experiments 1 and 2 showed that the intelligibility of natural speech was better than synthetic speech and that synthetic speech was better perceived than cell phone speech. The visual-motor methodology was found to demonstrate independent and supplemental information and provided a better understanding of the entire speech perception process. Experiment 3 was conducted to determine whether the automaticity of the tasks (Schneider & Shiffrin, 1977) helped to explain the results of the first two experiments. It was found that cell phone speech allowed better simultaneous pursuit rotor performance only at low intelligibility levels when participants ignored the listening task. Also, simultaneous task performance improved dramatically for natural speech when intelligibility was good. Overall, it could be concluded that knowledge of intelligibility alone is insufficient to characterize processing of different speech sources. Additional measures such as attentional demands and performance of simultaneous tasks were also important in characterizing the perception of different kinds of speech in complex listening environments.
Resumo:
Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.
Resumo:
The complex process of gait is rendered partially automatic by central pattern generators (CPGs). To further our understanding of their role in gait control in healthy subjects, we applied a paradigm of anti-phase, or syncopated, movement to gait. To provide a context for our results, we reviewed the literature on in-phase, or synchronized, gait. The review results are as follows. Auditory cueing increased step/stride rate for older subjects, but not younger. Stride rate variability decreased for younger subjects, perhaps because the metronome’s cue acted as a temporal ‘anchor point’ for each step. Step width increased in half of the treadmill studies, but none of the overground ones, suggesting a cumulative effect of the attentional demands of synchronizing gait while on a treadmill. Time series analysis revealed that the α exponent was the most sensitive parameter reported, decreasing toward anti-persistence in almost all cued-gait studies. This project compares in-phase (IN) and anti-phase gait (ANTI) in young and old healthy subjects. We expected gait to be less disrupted during ANTI trials at preferred speed, when the facilitating effect of CPGs would be strongest. The measures step time variability, jerk index, and harmonic ratio quantified gait perturbation: none indicated that ANTI was easiest at preferred walking speed. Surprisingly, the gait of older subjects was no more perturbed than that of younger subjects. When they successfully matched the pace of the beat, they unwittingly synchronized to it. The temporal relationship of their steps to the beat was the same in the IN and ANTI conditions. Younger subjects, visibly struggling during ANTI trials, were able to walk in syncopation. This result suggests that cognitive resources available only to the younger group are required to resist synchronizing to the beat.
Resumo:
The effects of attention to a lead stimulus and of its sensory properties on modulation of the acoustic blink reflex were investigated. Participants performed a reaction time task cued by an acoustic or a visual lead stimulus. In Experiment 1, half the participants were presented with sustained lead stimuli. For the remainder, the lead stimulus was discrete and consisted of two brief presentations that marked the onset and offset of a stimulus-free interval. In Experiment 2, sustained lead stimuli were presented at a low or high intensity. The attentional demands of the task enhanced blink latency and magnitude modulation during acoustic and visual lead stimuli, with blink modulation being largest at a late point during the lead stimulus. Independent of the attentional effects, blink latency and magnitude modulation were larger during sustained than during discrete acoustic lead stimuli, whereas there was no difference for visual lead stimuli. Increases in the intensity of the lead stimulus enhanced blink modulation regardless of lead stimulus modality. Attention to a lead stimulus and the properties of the lead stimulus appear to have independent effects on blink reflex modulation.