949 resultados para Attentional Demands


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Attention defines our mental ability to select and respond to stimuli, internal or external, on the basis of behavioural goals in the presence of competing, behaviourally irrelevant, stimuli. The frontal and parietal cortices are generally agreed to be involved with attentional processing, in what is termed the 'fronto-parietal' network. The left parietal cortex has been seen as the site for temporal attentional processing, whereas the right parietal cortex has been seen as the site for spatial attentional processing. There is much debate about when the modulation of the primary visual cortex occurs, whether it is modulated in the feedforward sweep of processing or modulated by feedback projections from extrastriate and higher cortical areas. MEG and psychophysical measurements were used to look at spatially selective covert attention. Dual-task and cue-based paradigms were used. It was found that the posterior parietal cortex (PPC), in particular the SPL and IPL, was the main site of activation during these experiments, and that the left parietal lobe was activated more strongly than the right parietal lobe throughout. The levels of activation in both parietal and occipital areas were modulated in accordance with attentional demands. It is likely that spatially selective covert attention is dominated by the left parietal lobe, and that this takes the form of the proposed sensory-perceptual lateralization within the parietal lobes. Another form of lateralization is proposed, termed the motor-processing lateralization, the side of dominance being determined by handedness, being reversed in left- relative to right-handers. In terms of the modulation of the primary visual cortex, it was found that it is unlikely that V1 is modulated initially; rather the modulation takes the form of feedback from higher extrastriate and parietal areas. This fits with the idea of preattentive visual processing, a commonly accepted idea which, in itself, prevents the concept of initial modulation of V1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.

Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.

Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prospective memory (PM) is a fundamental requirement for independent living which might be prematurely compromised in the neurodegenerative process, namely in mild cognitive impairment (MCI), a typical prodromal Alzheimer's disease (AD) phase. Most encoding manipulations that typically enhance learning in healthy adults are of minimal benefit to AD patients. However, there is some indication that these can display a recall advantage when encoding is accompanied by the physical enactment of the material. The aim of this study was to explore the potential benefits of enactment at encoding and cue-action relatedness on memory for intentions in MCI patients and healthy controls using a behavioral PM experimental paradigm. Method: We report findings examining the influence of enactment at encoding for PM performance in MCI patients and education-matched controls using a laboratory-based PM task with a factorial independent design. Results: PM performance was consistently superior when physical enactment was used at encoding and when target-action pairs were strongly associated. Importantly, these beneficial effects were cumulative and observable across both a healthy and a cognitively impaired lifespan as well as evident in the perceived subjective difficulty in performing the task. Conclusions: The identified beneficial effects of enacted encoding and semantic relatedness have unveiled the potential contribution of this encoding technique to optimize attentional demands through an adaptive allocation of resources strategies. We discuss our findings with respect to their potential impact on developing strategies to improve PM in AD sufferers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual reaction time (RT) was measured in 10 older men (mean age, 71.1 years) and gender-matched controls (mean age, 26.3 years) when standing (single task) and when walking on a motor-driven treadmill (dual task). There were 90 quasirandomly presented trials over 15 min in each condition. Longer mean and median RTs were observed in the dual task compared to the single task. Older males had significantly slower mean and median RTs (315 and 304 ms, respectively) than the younger group (273 and 266 ms, respectively) in both task conditions. There were no age or condition effects on with in-subject variability. Both groups showed a trend of increasing RT over the 90 single task trials but when walking only the younger group slowed. These novel findings demonstrate high but sustained attention by older adults when walking. It is proposed that the motor task's attentional demands might contribute to their slower preferred walking speed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the influence of top-down and bottom-up information on speech perception in complex listening environments. Specifically, the effects of listening to different types of processed speech were examined on intelligibility and on simultaneous visual-motor performance. The goal was to extend the generalizability of results in speech perception to environments outside of the laboratory. The effect of bottom-up information was evaluated with natural, cell phone and synthetic speech. The effect of simultaneous tasks was evaluated with concurrent visual-motor and memory tasks. Earlier works on the perception of speech during simultaneous visual-motor tasks have shown inconsistent results (Choi, 2004; Strayer & Johnston, 2001). In the present experiments, two dual-task paradigms were constructed in order to mimic non-laboratory listening environments. In the first two experiments, an auditory word repetition task was the primary task and a visual-motor task was the secondary task. Participants were presented with different kinds of speech in a background of multi-speaker babble and were asked to repeat the last word of every sentence while doing the simultaneous tracking task. Word accuracy and visual-motor task performance were measured. Taken together, the results of Experiments 1 and 2 showed that the intelligibility of natural speech was better than synthetic speech and that synthetic speech was better perceived than cell phone speech. The visual-motor methodology was found to demonstrate independent and supplemental information and provided a better understanding of the entire speech perception process. Experiment 3 was conducted to determine whether the automaticity of the tasks (Schneider & Shiffrin, 1977) helped to explain the results of the first two experiments. It was found that cell phone speech allowed better simultaneous pursuit rotor performance only at low intelligibility levels when participants ignored the listening task. Also, simultaneous task performance improved dramatically for natural speech when intelligibility was good. Overall, it could be concluded that knowledge of intelligibility alone is insufficient to characterize processing of different speech sources. Additional measures such as attentional demands and performance of simultaneous tasks were also important in characterizing the perception of different kinds of speech in complex listening environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex process of gait is rendered partially automatic by central pattern generators (CPGs). To further our understanding of their role in gait control in healthy subjects, we applied a paradigm of anti-phase, or syncopated, movement to gait. To provide a context for our results, we reviewed the literature on in-phase, or synchronized, gait. The review results are as follows. Auditory cueing increased step/stride rate for older subjects, but not younger. Stride rate variability decreased for younger subjects, perhaps because the metronome’s cue acted as a temporal ‘anchor point’ for each step. Step width increased in half of the treadmill studies, but none of the overground ones, suggesting a cumulative effect of the attentional demands of synchronizing gait while on a treadmill. Time series analysis revealed that the α exponent was the most sensitive parameter reported, decreasing toward anti-persistence in almost all cued-gait studies. This project compares in-phase (IN) and anti-phase gait (ANTI) in young and old healthy subjects. We expected gait to be less disrupted during ANTI trials at preferred speed, when the facilitating effect of CPGs would be strongest. The measures step time variability, jerk index, and harmonic ratio quantified gait perturbation: none indicated that ANTI was easiest at preferred walking speed. Surprisingly, the gait of older subjects was no more perturbed than that of younger subjects. When they successfully matched the pace of the beat, they unwittingly synchronized to it. The temporal relationship of their steps to the beat was the same in the IN and ANTI conditions. Younger subjects, visibly struggling during ANTI trials, were able to walk in syncopation. This result suggests that cognitive resources available only to the younger group are required to resist synchronizing to the beat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of attention to a lead stimulus and of its sensory properties on modulation of the acoustic blink reflex were investigated. Participants performed a reaction time task cued by an acoustic or a visual lead stimulus. In Experiment 1, half the participants were presented with sustained lead stimuli. For the remainder, the lead stimulus was discrete and consisted of two brief presentations that marked the onset and offset of a stimulus-free interval. In Experiment 2, sustained lead stimuli were presented at a low or high intensity. The attentional demands of the task enhanced blink latency and magnitude modulation during acoustic and visual lead stimuli, with blink modulation being largest at a late point during the lead stimulus. Independent of the attentional effects, blink latency and magnitude modulation were larger during sustained than during discrete acoustic lead stimuli, whereas there was no difference for visual lead stimuli. Increases in the intensity of the lead stimulus enhanced blink modulation regardless of lead stimulus modality. Attention to a lead stimulus and the properties of the lead stimulus appear to have independent effects on blink reflex modulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attention difficulties and poor balance are both common sequel following a brain injury. This study aimed to determine whether brain injured adults had greater difficulty than controls in performing a basic balance task while concurrently completing several different cognitive tasks varying in visuo-spatial attentional load and complexity. Twenty brain injured adults and 20 age-, sex- and education level-matched controls performed a balance-only task (step stance held for 30s), five cognitive-only tasks (simple and complex non-spatial, visuo-spatial, and a control articulation task), and both together (dual tasks). Brain injured adults showed a greater centre of pressure (COP) excursion and velocity in all conditions than controls. Brain injured adults also demonstrated greater interference with balance when concurrently performing two cognitive tasks than control subjects. These were the control articulation and the simple non-spatial task. It is likely that distractibility during these simple tasks contributed to an increase in COP motion and interference with postural stability in stance. Performing visuo-spatial tasks concurrently with the balance task did not result in any change in COP motion. Dual task interference in this group is thus unlikely to be due to structural interference. Similarly, as the more complex tasks did not uniformly result in increased interference, a reduction in attentional capacity in the brain injured population is unlikely to be the primary cause of dual task interference in this group. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present report reviews behavioural, electroencephalographic, and especially magnetoencephalographic findings on the cortical mechanisms underlying attentional processes that separate targets from distractors and that ensure durable target representations for goal-directed action. A common way of investigation is to observe the system’s overt and covert behaviour when capacity limitations are reached. Here we focus on the aspect of temporally enhanced processing load, namely on performance deficits occurring under rapid-serial-visual-presentation (RSVP) conditions. The most prominent of these deficits is the so-called “attentional blink” (AB) effect. We first report MEG findings with respect to the time course of activation that shows modulations around 300 ms after target onset which reflect demands and success of target consolidation. Then, findings regarding long-range inter-area phase synchronization are reported that are hypothesized to mediate communication within the attentional network. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioural performance. Furthermore, enhanced vigilance of the system elicits systematically increased synchronization indices. A hypothetical framework is sketched out that aims at explaining limitations in multiple target consolidation under RSVP conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to evaluate the roles of age and emotional valence in word recognition in terms of ex-Gaussian distribution components. In order to do that, a word recognition task was carried out with two age groups, in which emotional valence was manipulated. Older participants did not present a clear trend for reaction times. The younger participants showed significant statistical differences in negative words for target and distracting conditions. Addressing the ex-Gaussian tau parameter, often related to attentional demands in the literature, age-related differences in emotional valence seem not to have an effect for negative words. Focusing on emotional valence for each group, the younger participants only showed an effect on negative distracting words. The older participants showed an effect regarding negative and positive target words, and negative distracting words. This suggests that the attentional demand is higher for emotional words, in particular, for the older participants.