975 resultados para Attaching and effacing Escherichia coli
Resumo:
Attaching and effacing (AE) lesions were observed in the caecum, proximal colon and rectum of one of four lambs experimentally inoculated at 6 weeks. of age with Escherichia coli O157:H7. However, the attached bacteria did not immunostain with O157-specific antiserum. Subsequent bacteriological analysis of samples from this animal yielded two E. coli O115:H- strains, one from the colon (CO) and one from the rectum (RC), and those bacteria forming the AE lesions were shown to be of the O115 serogroup by immunostaining. The O115:H(-)isolates formed microcolonies and attaching and effacing lesions, as demonstrated by the fluorescence actin staining test, on HEp-2 tissue culture cells. Both isolates were confirmed by PCR to encode the epsilon (epsilon) subtype of intimin. Supernates of both O115:H- isolates induced cytopathic effects on Vero cell monolayers, and PCR analysis verified that both isolates encoded EAST1, CNF1 and CNF2 toxins but not Shiga-like toxins. Both isolates harboured similar sized plasmids but-PCR analysis indicated that only one of the O115:H- isolates (CO) possessed the plasmid-associated virulence determinants ehxA and etpD. Neither strain possessed the espP, katP or bfpA plasmid-associated virulence determinants. These E. coli O115:H- strains exhibited a novel combination of virulence determinants and are the first isolates found to possess both CNF1 and CNF2.
Resumo:
Ruminants harbour both O157:H7 and non-O157 Attaching Effacing Escherichia coli (AEEC) strains but to date only nonO157 AEEC have been shown to induce attaching effacing lesions in naturally infected animals. However, O157 may induce lesions in deliberate oral inoculation studies and persistence is considered dependent upon the bacterially encoded locus for enterocyte effacement. In concurrent infections in ruminants it is unclear whether non-O157 AEEC contribute either positively or negatively to the persistence of E. coli O157:H7. To investigate this, and prior to animal studies, E. coli O157:H7 NCTC 12900, a non-toxigenic strain that persists in conventionally reared sheep, and non-toxigenic AEEC O26:K60 isolates of sheep origin were tested for adherence to Hep-2 tissue culture alone and in competition one with another. Applied together, both strains adhered in similar numbers but lower than when either was applied separately. Pre-incubation of tissue culture with either one strain reduced significantly (P < 0.05) the extent of adherence of the strain that was applied second. It was particularly noticeable that AEEC O26 when applied first reduced adherence and inhibited microcolony formation, as demonstrated by confocal microscopy, of E. coli 01 57:H7. The possibility that prior colonisation of a ruminant by non-O157 AEEC such as O26 may antagonise O157 colonisation and persistence in ruminants is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In a series of experiments involving the inoculation of sheep with Escherichia coli O157:H7, and subsequent detailed histopathological examination of the intestinal mucosa, attaching-effacing (AE) lesions formed by elements of the natural flora were observed in 18% of animals. These incidental AE lesions typically were small and sparse, and were not associated with clinical disease. It was possible to identify further some of the lesional bacteria, revealing that E. coli O115 had formed lesions in one of the seven affected animals, and similarly E. coli O26 had formed some of the lesions in another. As AE strains, source flocks, housing and feed sources were diverse, a common source of lesion-forming bacteria appears to be unlikely. It is postulated that subclinical AE lesions are a mechanism of persistence of AE bacteria in sheep.
Resumo:
Intimin and EspA proteins are virulence factors expressed by attaching and effacing Escherichia coli (AEEC) such as enteropathogenic and enterohaemorrhagic E. coli. The EspA protein makes up a filament structure forming part of the type III secretion system (TTSS) that delivers effector proteins to the host epithelial cell. Bacterial surface displayed intimin interacts with translocated intimin receptor in the host cell membrane leading to intimate attachment of the bacterium and subsequent attaching and effacing lesions. Here, we have assessed the use of recombinant monoclonal antibodies against E. coli O157:147 EspA and intimin for the disruption of AEEC interaction with the host cell. Anti-gamma intimin antibodies did not reduce either adhesion of E. coli O157:H7 to host cell mono-layers or subsequent host cell actin rearrangement. Anti-EspA antibodies similarly had no effect on bacterial adhesion however they had a marked effect upon E. coli O157:H7-induced host cell actin rearrangement, where both monoclonal and polyclonal antibodies completely blocked cytoskeletal changes within the host cell. Furthermore, these anti-EspA antibodies were shown to reduce actin rearrangement induced by some but not all other AEEC serotypes tested. Both polyclonal and monoclonal antibodies could be used to label E. coli O157 EspA filaments and these immunoreagents did not inhibit the formation of such filaments. This is the first report of monoclonal antibodies to EspA capable of disrupting the TTSS function of E. coli O157:H7. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Enteropathogenic Escherichia coli (EPEC) strains are important agents of infantile diarrhea all over the world, gaining even greater importance in developing countries. EPEC have also been isolated from various animal species, but most isolates belong to serotypes that differ from those recovered from humans. However, it has been demonstrated that several isolates from non-human primates belong to the serogroups and/or serotypes related to those implicated in human disease. The objective of this study was to evaluate the genetic differences between thirteen strains isolated from non-human primates and the same number of strains isolated from human infections. Human isolates belonged to the same serogroup/serotype as the monkey strains and the evaluation was done by analysis of random amplified polymorphic DNA. Dendrogram analysis showed that there was no clustering between human and monkey strains. Human and non-human isolates of the EPEC serotypes O127:H40 and O128:H2 shared 90 and 87% of their bands, respectively, indicating strong genomic similarity between the strains, leading to the speculation that they may have arisen from the same pathogenic clone. To our knowledge, this study is the first one comparing genomic similarity between human and non-human primate strains and the results provide further evidence that monkey EPEC strains correlate with human EPEC, as suggested in a previous investigation.
Resumo:
Enteropathogenic Escherichia coli ( EPEC) strains are important agents of infantile diarrhea all over the world, gaining even greater importance in developing countries. EPEC have also been isolated from various animal species, but most isolates belong to serotypes that differ from those recovered from humans. However, it has been demonstrated that several isolates from non- human primates belong to the serogroups and/ or serotypes related to those implicated in human disease. The objective of this study was to evaluate the genetic differences between thirteen strains isolated from non- human primates and the same number of strains isolated from human infections. Human isolates belonged to the same serogroup/ serotype as the monkey strains and the evaluation was done by analysis of random amplified polymorphic DNA. Dendrogram analysis showed that there was no clustering between human and monkey strains. Human and non- human isolates of the EPEC serotypes O127:H40 and O128:H2 shared 90 and 87% of their bands, respectively, indicating strong genomic similarity between the strains, leading to the speculation that they may have arisen from the same pathogenic clone. To our knowledge, this study is the first one comparing genomic similarity between human and non- human primate strains and the results provide further evidence that monkey EPEC strains correlate with human EPEC, as suggested in a previous investigation.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Recent surveys have shown that Escherichia coli O26 is prevalent in ruminants compared with E. coli O157. These serogroups share common colonisation factors and we hypothesised that prior colonisation by E. coli O26 may show reduced colonisation by E. coli O157. To test this hypothesis, strains of E. coli O26:K6O and O157:H7 were tested in competitive in vitro and in vivo studies. Using an established 6-week-old lamb model, an experimental group of lambs was dosed orally with E. coli O26:K6O and then E. coli O157:147 four days later. The faecal shedding of O26:K6O and O157:H7 organisms from this experimental group was compared with that from animals dosed with either O26:K6O alone or O157:H7 alone. Shedding data indicated that counts for O157:H7 were unaffected by the competition from O26:K6O, whereas the O26:K6O counts were lower when competing with O157:H7. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Escherichia coli O26:K60, with genetic attributes consistent with a potentially human enterohaemorrhagic E coli was isolated from the faeces of an eight-month-old heifer with dysentery. Attaching and effacing lesions were identified in the colon of a similarly affected heifer examined postmortem, and shown to be associated with E coli O26 by specific immunolabelling.
Resumo:
Four 6-day-old conventionally reared lambs were inoculated orally with a total of 10(9) cfu comprising equal numbers of four enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains. All animals remained clinically normal. Tissues were sampled under terminal anaesthesia at 12, 36, 60 and 84 h post inoculation (hpi). EHEC O157:H7 was cultured from most gastrointestinal tract sites. Small, sparse attaching and effacing (AE) lesions were found in the caecum at 12 and 36 hpi and in the terminal colon and rectum at 84 hpi. Organisms in the lesions were labelled specifically by an O157 antiserum. The results indicate that the well-characterised mechanisms for intimate attachment encoded by the locus for enterocyte effacement (LEE) of EHEC O157:H7 may contribute to the initial events. at least, of colonisation of sheep.