965 resultados para Atomic fountain clock
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the defected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow Rb-87 beam that can be used as a source of an atomic fountain clock or a space clock.
Resumo:
利用拉曼光场代替喷泉原子钟的微波腔实现拉曼喷泉原子钟。将分离拉曼光场技术与冷原子喷泉技术相结合,避免了在真空腔内放置微波腔,简化了真空系统,同时还保持了很高的准确度。采用半经典理论研究了冷原子喷泉与拉曼光场的相互作用过程,得到了冉赛(Ramsey)条纹。比较了拉曼喷泉原子钟与热铯束拉曼原子钟,前者有更小的体积和功耗,其精度可能达到或超过商用小铯钟。还比较了拉曼喷泉原子钟与微波喷泉原子钟的差别,分析了光子反冲的影响,提出利用同向传播和相向传播的两台拉曼原子钟测量精细结构常数。
Resumo:
对自行研制的激光冷却铷原子喷泉钟的微波谐振腔进行了分析和设计,确定了需要的微波谐振腔基本参数。对影响微波谐振腔共振频率的因素进行了分析和研究,得到了共振频率随环境因素的变化规律。这些对调节微波腔共振频率和提高原子钟的准确度有重要意义。还对研制的微波谐振腔进行了测试,结果表明微波谐振腔的性能满足激光冷却铷原子喷泉钟的要求。由测试结果进一步估算了微波谐振腔引起的横向腔相移。
Resumo:
We present an experimental scheme of a cold atom space clock with a movable cavity. By using a single microwave cavity, we find that the clock has a significant advantage, i.e. the longitudinal cavity phase shift is eliminated. A theoretical analysis has been carried out in terms of the relation between the atomic transition probability and the velocity of the moving cavity by taking into account the velocity distribution of cold atoms. The requirements for the microwave power and its stability for atomic pi/2 excitation at different moving velocities of the cavity lead to the determination of the proper working parameters of the rubidium clock in frequency accuracy 10(-17). Finally, the mechanical stability for the scheme is analysed and the ways of solving the possible mechanical instability of the device are proposed.
Resumo:
It is the first time in China that the phase variations and phase shift of microwave cavity in a miniature Rb fountain frequency standard are studied, considering the effect of imperfect metallic walls. Wall losses in the microwave cavity lead to small traveling wave components that deliver power from the cavity feed to the walls of cavity. The small traveling wave components produce a microradian distribution of phase throughout the cavity ity, and therefore distributed cavity phase shifts need to be considered. The microwave cavity is a TE011 circular cylinder copper cavity, with round cut-hole of end plates (14mm in diameter) for access for the atomic flux and two small apertures in the center of the side wall for coupling in microwave power. After attenuation alpha is calculated, field variations in cavity are solved. The field variations of the cavity are given. At the same time, the influences of loaded quality factor QL and diameter/height (2a/d) of the microwave cavity on the phase variations and phase shift are considered. According to the phase variation and phase shift of microwave cavity we select the parameters of cavity, diameter 2a = 69.2mm, height d = 34.6mm, QL = 5000, which will result in an uncertainty delta(Delta f / f0 ) < 4.7 x 10(-17) and meets the requirement for the miniature Rb fountain frequency standard with accuracy 10(-15).
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
In case of violation of CPT- and Lorentz Symmetry, the minimal Standard Model Extension (SME) of Kostelecky and coworkers predicts sidereal modulations of atomic transition frequencies as the Earth rotates relative to a Lorentz-violating background field. One method to search for these modulations is the so-called clock-comparison experiment, where the frequencies of co-located clocks are compared as they rotate with respect to the fixed stars. In this work an experiment is presented where polarized 3He and 129Xe gas samples in a glass cell serve as clocks, whose nuclear spin precession frequencies are detected with the help of highly sensitive SQUID sensors inside a magnetically shielded room. The unique feature of this experiment is the fact that the spins are precessing freely, with transverse relaxation times of up to 4.4 h for 129Xe and 14.1 h for 3He. To be sensitive to Lorentz-violating effects, the influence of external magnetic fields is canceled via the weighted difference of the 3He and 129Xe frequencies or phases. The Lorentz-violating SME parameters for the neutron are determined out of a fit on the phase difference data of 7 spin precession measurements of 12 to 16 hours length. The result of the fit gives an upper limit for the equatorial component of the neutron parameter b_n of 3.7×10^(−32) GeV at the 95% confidence level. This value is not limited by the signal-to-noise ratio, but by the strong correlations between the fit parameters. To reduce the correlations and therewith improve the sensitivity of future experiments, it will be necessary to change the time structure of the weighted phase difference, which can be realized by increasing the 129Xe relaxation time.
Resumo:
The effects of water saturation and open pore space on the seismic velocities of crystalline rocks are extremely important when comparing laboratory data to in situ geophysical observations (e.g., Dortman and Magid, 1969; Nur and Simmons, 1969; Christensen and Salisbury, 1975). The existence of fractured rocks, flow breccias and drained pillows in oceanic crustal layer 2a, for instance, may appreciably reduce seismic velocities in that layer (Hyndman, 1976). Laboratory data assessing the influence of porosity and water saturation on seismic velocities of oceanic crustal rocks would certainly aid interpretation of marine geophysical data. Igneous rocks recovered during Leg 58 of the Deep Sea Drilling Project, in the Shikoku Basin and Daito Basin in the North Philippine Sea, are extremely vesicular, as evidenced by shipboard measurements of porosities, which range from 0 to 30 per cent (see reports on Sites 442, 443, 444, and 446, this volume). Samples with this range of porosities afford an excellent opportunity to examine the influence of porosity and water saturation on seismic velocities of oceanic basalts. This paper presents compressional-wave velocities to confining pressures of 1.5 kbars for water-saturated and air-dried basalt samples from the North Philippine Sea. Samples used in this study are from sites 442, 443 and 444 in the Shikoku Basin and Site 446 in the Daito Basin. Excellent negative correlation between porosity and compressional-wave velocity demonstrates that waterfilled pore space can significantly reduce compressionalwave velocities in porous basalts. Velocities measured in air-dried samples indicate that the velocity difference between dry samples and saturated samples is small for porosities exceeding 10 per cent, and very large for lower porosities.