998 resultados para Atmospheric monitoring
Resumo:
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
Resumo:
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment.
Resumo:
An economic air pollution control model, which determines the least cost of reaching various air quality levels, is formulated. The model takes the form of a general, nonlinear, mathematical programming problem. Primary contaminant emission levels are the independent variables. The objective function is the cost of attaining various emission levels and is to be minimized subject to constraints that given air quality levels be attained.
The model is applied to a simplified statement of the photochemical smog problem in Los Angeles County in 1975 with emissions specified by a two-dimensional vector, total reactive hydrocarbon, (RHC), and nitrogen oxide, (NOx), emissions. Air quality, also two-dimensional, is measured by the expected number of days per year that nitrogen dioxide, (NO2), and mid-day ozone, (O3), exceed standards in Central Los Angeles.
The minimum cost of reaching various emission levels is found by a linear programming model. The base or "uncontrolled" emission levels are those that will exist in 1975 with the present new car control program and with the degree of stationary source control existing in 1971. Controls, basically "add-on devices", are considered here for used cars, aircraft, and existing stationary sources. It is found that with these added controls, Los Angeles County emission levels [(1300 tons/day RHC, 1000 tons /day NOx) in 1969] and [(670 tons/day RHC, 790 tons/day NOx) at the base 1975 level], can be reduced to 260 tons/day RHC (minimum RHC program) and 460 tons/day NOx (minimum NOx program).
"Phenomenological" or statistical air quality models provide the relationship between air quality and emissions. These models estimate the relationship by using atmospheric monitoring data taken at one (yearly) emission level and by using certain simple physical assumptions, (e. g., that emissions are reduced proportionately at all points in space and time). For NO2, (concentrations assumed proportional to NOx emissions), it is found that standard violations in Central Los Angeles, (55 in 1969), can be reduced to 25, 5, and 0 days per year by controlling emissions to 800, 550, and 300 tons /day, respectively. A probabilistic model reveals that RHC control is much more effective than NOx control in reducing Central Los Angeles ozone. The 150 days per year ozone violations in 1969 can be reduced to 75, 30, 10, and 0 days per year by abating RHC emissions to 700, 450, 300, and 150 tons/day, respectively, (at the 1969 NOx emission level).
The control cost-emission level and air quality-emission level relationships are combined in a graphical solution of the complete model to find the cost of various air quality levels. Best possible air quality levels with the controls considered here are 8 O3 and 10 NO2 violations per year (minimum ozone program) or 25 O3 and 3 NO2 violations per year (minimum NO2 program) with an annualized cost of $230,000,000 (above the estimated $150,000,000 per year for the new car control program for Los Angeles County motor vehicles in 1975).
Resumo:
O benzeno foi o primeiro poluente atmosférico carcinogénico a ser regulamentado a nível europeu. Vários trabalhos têm sido publicados demonstrando a relação deste poluente com diversos tipos de neoplasias nomeadamente decorrentes de exposições a nível ocupacional. Porém, o estudo deste poluente para concentrações atmosféricas em ambientes exteriores ainda é pouco conhecido e está em clara evolução. Neste sentido, este trabalho pretende ser um contributo para o conhecimento da relação entre o benzeno atmosférico e a incidência de patologias que afectam os tecidos linfáticos e órgãos hematopoiéticos nomeadamente linfomas de Hodgkin, linfomas de não-Hodgkin e leucemias na população residente na Área Metropolitana do Porto. Dado a quase ausência de dados de monitorização das concentrações de benzeno atmosférico actualmente em Portugal, estas foram estimadas com base na definição de uma relação entre o benzeno e o monóxido de carbono. O conhecimento das concentrações em todo o domínio de estudo baseou-se na análise dos dados da Rede Automática de Monitorização da Qualidade do Ar porém, de modo a aumentar o detalhe espacial e temporal recorreu-se à modelação atmosférica aplicando o modelo TAPM. Para perceber a evolução temporal das concentrações, a modelação foi efectuada para os anos de 1991, 2001 e 2006 com base no ano meteorológico de 2006 e emissões para os respectivos anos ao nível da freguesia. O modelo foi previamente validado de acordo com uma metodologia proposta para este tipo de modelos. Contudo, mais do que perceber qual a variação da qualidade do ar a nível exterior, é importante conhecer o impacte de fontes interiores e o seu efeito na população. Assim, desenvolveu-se um modelo de exposição e dose que permitem conhecer os valores médios populacionais. A modelação da exposição populacional é efectuada com base nos perfis de actividade-tempo, nos movimentos pendulares inter-concelhos e nas concentrações de benzeno em ambientes exteriores e interiores. Na modelação da dose é ainda possível variações por sexo e idade. Por outro lado, para o estudo das patologias em análise efectuou-se uma análise epidemiológica espacial nomeadamente no que respeita à elaboração de mapas de incidência padronizados pela idade, e estudo da associação com a exposição ao benzeno atmosférico. Os resultados indicam associação entre o benzeno e as doenças em estudo. Esta evidência é mais notória quando a análise é realizada junto às principais fontes de emissão deste poluente, vias de tráfego e postos de abastecimento de combustível. Porém, a ausência de informação limita o estudo não permitindo o controlo de potenciais variáveis de confundimento como a exposição ao fumo do tabaco. A metodologia permite efectuar uma gestão integrada da qualidade do ar exterior e interior, funcionando como uma ferramenta do apoio à decisão para elaboração de planos de prevenção de longo prazo de potenciais efeitos na saúde das populações nomeadamente para outro tipo de patologias.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ∼2.4 km by ∼5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
Resumo:
Atmospheric monitoring of high northern latitudes (> 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes compared to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. Here we show that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results emphasize the importance of climate-vegetation-carbon cycle feedbacks at high latitudes, and indicate that during the last decades photosynthetic carbon uptake has reacted much more strongly to warming than carbon release processes.
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
We assess the performance of an inverse Lagrangian dispersion technique for its suitability to quantify leakages from geological storage of CO2. We find the technique is accurate ((QbLS/Q)=0.99, sigma=0.29) when strict meteorological filtering is applied to ensure that Monin-Obukhov Similarity Theory is valid for the periods analysed and when downwind enrichments in tracer gas concentration are 1% or more above background concentration. Because of their respective baseline atmospheric concentrations, this enrichment criterion is less onerous for CH4 than for CO2. Therefore for geologically sequestered gas reservoirs with a significant CH4 component, monitoring CH4 as a surrogate for CO2 leakage could be as much as 10 times more sensitive than monitoring CO2 alone. Additional recommendations for designing a robust atmospheric monitoring strategy for geosequestration include: continuous concentration data; exact inter-calibration of up- and downwind concentration measurements; use of an array of point concentration sensors to maximise the use of spatial information about the leakage plume; and precise isotope ratio measurement to confirm the source of any concentration elevations detected.